Loading…

Highly Efficient Biosynthesis of γ-Bisabolene with a New Sesquiterpene Synthase AcTPS5 by Dual Cytoplasmic-Peroxisomal Engineering in Saccharomyces cerevisiae

γ-bisabolene is a monocyclic sesquiterpene with various biological activities; it has also been approved as a food additive. Additionally, the hydrogenated form of bisabolene is considered as a potential alternative to D2 diesel. Saccharomyces cerevisiae has the ability to produce a large amount of...

Full description

Saved in:
Bibliographic Details
Published in:Fermentation (Basel) 2023-09, Vol.9 (9), p.779
Main Authors: Liu, Jiajia, Yao, Ge, Wan, Xiukun, Wang, Fuli, Han, Penggang, Bao, Shaoheng, Wang, Kang, Song, Tianyu, Jiang, Hui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:γ-bisabolene is a monocyclic sesquiterpene with various biological activities; it has also been approved as a food additive. Additionally, the hydrogenated form of bisabolene is considered as a potential alternative to D2 diesel. Saccharomyces cerevisiae has the ability to produce a large amount of acetyl-CoA in both cytosol and peroxisomes, which serves as a precursor in terpene biosynthesis. In this study, AcTPS5 was identified as a new γ-bisabolene synthase. By expressing AcTPS5 and the mevalonate pathway in peroxisomes, γ-bisabolene titer was achieved at 125.0 mg/L. Deleting the peroxisome autophagy gene atg36 further improved γ-bisabolene production to 216.9 mg/L. The implementation of dual cytoplasmic–peroxisomal engineering further boosted γ-bisabolene production to 296.4 mg/L. Finally, through increasing the acetyl-CoA supply and down-regulating the expression of ERG9, γ-bisabolene production was achieved at 584.14 mg/L in shake-flask fermentation and 2.69 g/L in fed-batch fermentation, which is the highest reported production of γ-bisabolene to date. The strategy presented in this study provides an efficient approach for terpene production in S. cerevisiae.
ISSN:2311-5637
2311-5637
DOI:10.3390/fermentation9090779