Loading…
Metaheuristics optimized machine learning modelling for estimation of exergetic emissions of a propulsion system
You This study offers a metaheuristic design for primary parameters and architectures of two models of artificial neural network (ANN) in predicting a business jet aircraft’s exergo-emission parameters, such us exergy destruction ratio (rex,dest) and waste exergy ratio (rwex), at different flight st...
Saved in:
Published in: | MATEC Web of Conferences 2020, Vol.314, p.2001 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | You This study offers a metaheuristic design for primary parameters and architectures of two models of artificial neural network (ANN) in predicting a business jet aircraft’s exergo-emission parameters, such us exergy destruction ratio (rex,dest) and waste exergy ratio (rwex), at different flight stages. In consideration of this, the development of hybrid genetic algorithm (GA)-ANN models has been achieved by considering real databases of rex, dest and rwex at various power levels. Implementing a metaheuristics-based optimization on the generated multilayer perceptron (MLP) ANN models has produced the most favorable initial network weights, step-size, biases as well as training algorithm’s back-propagation (BP) momentum rate in addition to optimal quantity of neurons in the hidden layer(s) with regard to the topology design. In accordance with an error assessment approach, there exists a close fit linking the reference real data and rwex (linear correlation ratio, R, value of 0.999851) as well as rex,dest (R value of 0.999985) predicted values. |
---|---|
ISSN: | 2261-236X 2274-7214 2261-236X |
DOI: | 10.1051/matecconf/202031402001 |