Loading…
Performance of Various Deep-Learning Networks in the Seed Classification Problem
We report the results of an in-depth study of 15 variants of five different Convolutional Neural Network (CNN) architectures for the classification of seeds of seven different grass species that possess symmetry properties. The performance metrics of the nets are investigated in relation to the comp...
Saved in:
Published in: | Symmetry (Basel) 2021-10, Vol.13 (10), p.1892 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report the results of an in-depth study of 15 variants of five different Convolutional Neural Network (CNN) architectures for the classification of seeds of seven different grass species that possess symmetry properties. The performance metrics of the nets are investigated in relation to the computational load and the number of parameters. The results indicate that the relation between the accuracy performance and operation count or number of parameters is linear in the same family of nets but that there is no relation between the two when comparing different CNN architectures. Using default pre-trained weights of the CNNs was found to increase the classification accuracy by ≈3% compared with training from scratch. The best performing CNN was found to be DenseNet201 with a 99.42% test accuracy for the highest resolution image set. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym13101892 |