Loading…
Electrically and mechanically driven rotation of polar spirals in a relaxor ferroelectric polymer
Topology created by quasi-continuous spatial variations of a local polarization direction represents an exotic state of matter, but field-driven manipulation has been hitherto limited to creation and destruction. Here we report that relatively small electric or mechanical fields can drive the non-vo...
Saved in:
Published in: | Nature communications 2024-01, Vol.15 (1), p.348-348, Article 348 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Topology created by quasi-continuous spatial variations of a local polarization direction represents an exotic state of matter, but field-driven manipulation has been hitherto limited to creation and destruction. Here we report that relatively small electric or mechanical fields can drive the non-volatile rotation of polar spirals in discretized microregions of the relaxor ferroelectric polymer poly(vinylidene fluoride-
ran
-trifluoroethylene). These polar spirals arise from the asymmetric Coulomb interaction between vertically aligned helical polymer chains, and can be rotated in-plane through various angles with robust retention. Given also that our manipulation of topological order can be detected via infrared absorption, our work suggests a new direction for the application of complex materials.
Polar spirals induced in a relaxor ferroelectric can be quasi-continuously rotated by applying electric/mechanical fields, due to an asymmetric Coulomb interaction. The rotations are non-volatile with robust retention, and can be optically read out. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-023-44395-5 |