Loading…
Codimension one distributions and stable rank 2 reflexive sheaves on threefolds
Abstract % We show that codimension one distributions with at most isolated singularities on certain smooth projective threefolds with Picard rank one have stable tangent sheaves. The ideas in the proof of this fact are then applied to the characterization of certain irreducible components of the mo...
Saved in:
Published in: | Anais da Academia Brasileira de Ciências 2021-01, Vol.93 (suppl 3), p.e20190909-e20190909 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract % We show that codimension one distributions with at most isolated singularities on certain smooth projective threefolds with Picard rank one have stable tangent sheaves. The ideas in the proof of this fact are then applied to the characterization of certain irreducible components of the moduli space of stable rank 2 reflexive sheaves on $\p3$, and to the construction of stable rank 2 reflexive sheaves with prescribed Chern classes on general threefolds. We also prove that if $\sG$ is a subfoliation of a codimension one distribution $\sF$ with isolated singularities, then $\sing(\sG)$ is a curve. As a consequence, we give a criterion to decide whether $\sG$ is globally given as the intersection of $\sF$ with another codimension one distribution. Turning our attention to codimension one distributions with non isolated singularities, we determine the number of connected components of the pure 1-dimensional component of the singular scheme. |
---|---|
ISSN: | 0001-3765 1678-2690 1678-2690 |
DOI: | 10.1590/0001-3765202120190909 |