Loading…
On Spectral Vectorial Differential Equation of Generalized Hermite Polynomials
In this paper, we first give some results on monic generalized Hermite polynomials (GHP) {Hn(μ)(x)}n≥0, orthogonal with respect to the positive weight |x|2μe−x2,μ>−12,x∈R, which will lead to the formulation of the second-order spectralvectorial differential equation (SVDE) that the GHP satisfies....
Saved in:
Published in: | Axioms 2022-07, Vol.11 (7), p.344 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we first give some results on monic generalized Hermite polynomials (GHP) {Hn(μ)(x)}n≥0, orthogonal with respect to the positive weight |x|2μe−x2,μ>−12,x∈R, which will lead to the formulation of the second-order spectralvectorial differential equation (SVDE) that the GHP satisfies. This SVDE differs from the one given in G. Szego (problem 25. p. 380), which is a pseudo-spectral equation. Second, we give the SVDE, as conjecture, satisfied by the generalized Jacobi polynomials Jn(α,α+1)(x,μ), orthogonal with respect to the positive weight w(x,α;μ)=|x|−μ(1−x2)α(1−x), μ−1 on [−1,1]. |
---|---|
ISSN: | 2075-1680 2075-1680 |
DOI: | 10.3390/axioms11070344 |