Loading…
Study of radiative heat transfer in Ångström- and nanometre-sized gaps
Radiative heat transfer in Ångström- and nanometre-sized gaps is of great interest because of both its technological importance and open questions regarding the physics of energy transfer in this regime. Here we report studies of radiative heat transfer in few Å to 5 nm gap sizes, performed under ul...
Saved in:
Published in: | Nature communications 2017-02, Vol.8 (1), p.1-9, Article 14479 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Radiative heat transfer in Ångström- and nanometre-sized gaps is of great interest because of both its technological importance and open questions regarding the physics of energy transfer in this regime. Here we report studies of radiative heat transfer in few Å to 5 nm gap sizes, performed under ultrahigh vacuum conditions between a Au-coated probe featuring embedded nanoscale thermocouples and a heated planar Au substrate that were both subjected to various surface-cleaning procedures. By drawing on the apparent tunnelling barrier height as a signature of cleanliness, we found that upon systematically cleaning via a plasma or locally pushing the tip into the substrate by a few nanometres, the observed radiative conductances decreased from unexpectedly large values to extremely small ones—below the detection limit of our probe—as expected from our computational results. Our results show that it is possible to avoid the confounding effects of surface contamination and systematically study thermal radiation in Ångström- and nanometre-sized gaps.
Here, Cui
et al
. report radiative heat transfer in few Ångström to 5 nm gap sizes, between a gold-coated probe and a heated planar gold substrate subjected to various surface cleaning procedures. They found that insufficiently cleaned probes and substrates led to unexpectedly large radiative thermal conductances. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/ncomms14479 |