Loading…
Lattice engineering enables definition of molecular features allowing for potent small-molecule inhibition of HIV-1 entry
Diverse entry inhibitors targeting the gp120 subunit of the HIV-1 envelope (Env) trimer have been developed including BMS-626529, also called temsavir, a prodrug version of which is currently in phase III clinical trials. Here we report the characterization of a panel of small-molecule inhibitors in...
Saved in:
Published in: | Nature communications 2019-01, Vol.10 (1), p.47-11, Article 47 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Diverse entry inhibitors targeting the gp120 subunit of the HIV-1 envelope (Env) trimer have been developed including BMS-626529, also called temsavir, a prodrug version of which is currently in phase III clinical trials. Here we report the characterization of a panel of small-molecule inhibitors including BMS-818251, which we show to be >10-fold more potent than temsavir on a cross-clade panel of 208-HIV-1 strains, as well as the engineering of a crystal lattice to enable structure determination of the interaction between these inhibitors and the HIV-1 Env trimer at higher resolution. By altering crystallization lattice chaperones, we identify a lattice with both improved diffraction and robust co-crystallization of HIV-1 Env trimers from different clades complexed to entry inhibitors with a range of binding affinities. The improved diffraction reveals BMS-818251 to utilize functional groups that interact with gp120 residues from the conserved β20-β21 hairpin to improve potency.
Temsavir, a compound that inhibits HIV entry by binding envelope (Env), is currently in clinical development. Here, Lai et al. identify a more than 10-fold improved compound and, using lattice engineering, obtain crystal structures that give insights into improved inhibition between small molecules and Env. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-018-07851-1 |