Loading…
Lack of XPC leads to a shift between respiratory complexes I and II but sensitizes cells to mitochondrial stress
Genomic instability drives tumorigenesis and DNA repair defects are associated with elevated cancer. Metabolic alterations are also observed during tumorigenesis, although a causal relationship between these has not been clearly established. Xeroderma pigmentosum (XP) is a DNA repair disease charact...
Saved in:
Published in: | Scientific reports 2017-03, Vol.7 (1), p.155-155, Article 155 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Genomic instability drives tumorigenesis and DNA repair defects are associated with elevated cancer. Metabolic alterations are also observed during tumorigenesis, although a causal relationship between these has not been clearly established. Xeroderma pigmentosum (XP) is a DNA repair disease characterized by early cancer. Cells with reduced expression of the XPC protein display a metabolic shift from OXPHOS to glycolysis, which was linked to accumulation of nuclear DNA damage and oxidants generation via NOX-1. Using XP-C cells, we show that mitochondrial respiratory complex I (CI) is impaired in the absence of XPC, while complex II (CII) is upregulated in XP-C cells. The CI/CII metabolic shift was dependent on XPC, as XPC complementation reverted the phenotype. We demonstrate that mitochondria are the primary source of H
2
O
2
and glutathione peroxidase activity is compromised. Moreover, mtDNA is irreversibly damaged and accumulates deletions. XP-C cells were more sensitive to the mitochondrial inhibitor antimycin A, an effect also prevented in XPC-corrected cells. Our results show that XPC deficiency leads to alterations in mitochondrial redox balance with a CI/CII shift as a possible adaptation to lower CI activity, but at the cost of sensitizing XP-C cells to mitochondrial oxidative stress. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-017-00130-x |