Loading…

On parameter bias in earthquake sequence models using data assimilation

The feasibility of physics-based forecasting of earthquakes depends on how well models can be calibrated to represent earthquake scenarios given uncertainties in both models and data. We investigate whether data assimilation can estimate current and future fault states, i.e., slip rate and shear str...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear processes in geophysics 2023-04, Vol.30 (2), p.101-115
Main Authors: Banerjee, Arundhuti, van Dinther, Ylona, Vossepoel, Femke C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c477t-bf75036c167fd38bcbb431e4a13dfbddcb491e22e4b2515f94443387db5691b43
cites cdi_FETCH-LOGICAL-c477t-bf75036c167fd38bcbb431e4a13dfbddcb491e22e4b2515f94443387db5691b43
container_end_page 115
container_issue 2
container_start_page 101
container_title Nonlinear processes in geophysics
container_volume 30
creator Banerjee, Arundhuti
van Dinther, Ylona
Vossepoel, Femke C
description The feasibility of physics-based forecasting of earthquakes depends on how well models can be calibrated to represent earthquake scenarios given uncertainties in both models and data. We investigate whether data assimilation can estimate current and future fault states, i.e., slip rate and shear stress, in the presence of a bias in the friction parameter. We perform state estimation as well as combined state-parameter estimation using a sequential-importance resampling particle filter in a zero-dimensional (0D) generalization of the Burridge–Knopoff spring–block model with rate-and-state friction. Minor changes in the friction parameter ϵ can lead to different state trajectories and earthquake characteristics. The performance of data assimilation with respect to estimating the fault state in the presence of a parameter bias in ϵ depends on the magnitude of the bias. A small parameter bias in ϵ (+3 %) can be compensated for very well using state estimation (R2 = 0.99), whereas an intermediate bias (−14 %) can only be partly compensated for using state estimation (R2 = 0.47). When increasing particle spread by accounting for model error and an additional resampling step, R2 increases to 0.61. However, when there is a large bias (−43 %) in ϵ, only state-parameter estimation can fully account for the parameter bias (R2 = 0.97). Thus, simultaneous state and parameter estimation effectively separates the error contributions from friction and shear stress to correctly estimate the current and future shear stress and slip rate. This illustrates the potential of data assimilation for the estimation of earthquake sequences and provides insight into its application in other nonlinear processes with uncertain parameters.
doi_str_mv 10.5194/npg-30-101-2023
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8c7e23cff3954c11ab0ac9f7f2a9fa4c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A744390512</galeid><doaj_id>oai_doaj_org_article_8c7e23cff3954c11ab0ac9f7f2a9fa4c</doaj_id><sourcerecordid>A744390512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-bf75036c167fd38bcbb431e4a13dfbddcb491e22e4b2515f94443387db5691b43</originalsourceid><addsrcrecordid>eNptkc2LFDEQxRtRcF09ew148tC7qSTdmRyXRdeBhQU_zqHy1Wac7swmadD_3qwjugNLHVIpfvV4xeu6t0AvBlDicjlMPac9UOgZZfxZdwYjlb1UYnz-qH_ZvSplRymIYWRn3c3dQg6YcfbVZ2IiFhIX4jHX7_cr_vCk-PvVL9aTOTm_L2QtcZmIw4oES4lz3GONaXndvQi4L_7N3_e8-_bxw9frT_3t3c32-uq2t0LK2psgB8pHC6MMjm-MNUZw8AKBu2Ccs0Yo8Ix5YdgAQ1BCCM430plhVNDY82571HUJd_qQ44z5l04Y9Z9BypNu3qPde72x0jNuQ-BqEBYADUWrggwMVUBhm9a7o9Yhp3ZkqXqX1rw0-5pJNTDgQMV_asImGpeQakY7x2L1lWzuFB2ANeriCaqV83O0afEhtvnJwvuThcZU_7NOuJait18-n7KXR9bmVEr24d_hQPVD-LqFrzltX9AP4fPfCqCgGA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795213104</pqid></control><display><type>article</type><title>On parameter bias in earthquake sequence models using data assimilation</title><source>Publicly Available Content Database</source><source>EZB Electronic Journals Library</source><creator>Banerjee, Arundhuti ; van Dinther, Ylona ; Vossepoel, Femke C</creator><creatorcontrib>Banerjee, Arundhuti ; van Dinther, Ylona ; Vossepoel, Femke C</creatorcontrib><description>The feasibility of physics-based forecasting of earthquakes depends on how well models can be calibrated to represent earthquake scenarios given uncertainties in both models and data. We investigate whether data assimilation can estimate current and future fault states, i.e., slip rate and shear stress, in the presence of a bias in the friction parameter. We perform state estimation as well as combined state-parameter estimation using a sequential-importance resampling particle filter in a zero-dimensional (0D) generalization of the Burridge–Knopoff spring–block model with rate-and-state friction. Minor changes in the friction parameter ϵ can lead to different state trajectories and earthquake characteristics. The performance of data assimilation with respect to estimating the fault state in the presence of a parameter bias in ϵ depends on the magnitude of the bias. A small parameter bias in ϵ (+3 %) can be compensated for very well using state estimation (R2 = 0.99), whereas an intermediate bias (−14 %) can only be partly compensated for using state estimation (R2 = 0.47). When increasing particle spread by accounting for model error and an additional resampling step, R2 increases to 0.61. However, when there is a large bias (−43 %) in ϵ, only state-parameter estimation can fully account for the parameter bias (R2 = 0.97). Thus, simultaneous state and parameter estimation effectively separates the error contributions from friction and shear stress to correctly estimate the current and future shear stress and slip rate. This illustrates the potential of data assimilation for the estimation of earthquake sequences and provides insight into its application in other nonlinear processes with uncertain parameters.</description><identifier>ISSN: 1607-7946</identifier><identifier>ISSN: 1023-5809</identifier><identifier>EISSN: 1607-7946</identifier><identifier>DOI: 10.5194/npg-30-101-2023</identifier><language>eng</language><publisher>Gottingen: Copernicus GmbH</publisher><subject>Analysis ; Bias ; Data assimilation ; Data collection ; Earthquake forecasting ; Earthquake prediction ; Earthquakes ; Error correction ; Estimates ; Fault lines ; Friction ; Mathematical models ; Methods ; Modelling ; Parameter estimation ; Parameter uncertainty ; Physics ; Process parameters ; Resampling ; Seismic activity ; Seismology ; Shear stress ; State estimation</subject><ispartof>Nonlinear processes in geophysics, 2023-04, Vol.30 (2), p.101-115</ispartof><rights>COPYRIGHT 2023 Copernicus GmbH</rights><rights>2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-bf75036c167fd38bcbb431e4a13dfbddcb491e22e4b2515f94443387db5691b43</citedby><cites>FETCH-LOGICAL-c477t-bf75036c167fd38bcbb431e4a13dfbddcb491e22e4b2515f94443387db5691b43</cites><orcidid>0000-0002-3391-6651</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2795213104/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2795213104?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Banerjee, Arundhuti</creatorcontrib><creatorcontrib>van Dinther, Ylona</creatorcontrib><creatorcontrib>Vossepoel, Femke C</creatorcontrib><title>On parameter bias in earthquake sequence models using data assimilation</title><title>Nonlinear processes in geophysics</title><description>The feasibility of physics-based forecasting of earthquakes depends on how well models can be calibrated to represent earthquake scenarios given uncertainties in both models and data. We investigate whether data assimilation can estimate current and future fault states, i.e., slip rate and shear stress, in the presence of a bias in the friction parameter. We perform state estimation as well as combined state-parameter estimation using a sequential-importance resampling particle filter in a zero-dimensional (0D) generalization of the Burridge–Knopoff spring–block model with rate-and-state friction. Minor changes in the friction parameter ϵ can lead to different state trajectories and earthquake characteristics. The performance of data assimilation with respect to estimating the fault state in the presence of a parameter bias in ϵ depends on the magnitude of the bias. A small parameter bias in ϵ (+3 %) can be compensated for very well using state estimation (R2 = 0.99), whereas an intermediate bias (−14 %) can only be partly compensated for using state estimation (R2 = 0.47). When increasing particle spread by accounting for model error and an additional resampling step, R2 increases to 0.61. However, when there is a large bias (−43 %) in ϵ, only state-parameter estimation can fully account for the parameter bias (R2 = 0.97). Thus, simultaneous state and parameter estimation effectively separates the error contributions from friction and shear stress to correctly estimate the current and future shear stress and slip rate. This illustrates the potential of data assimilation for the estimation of earthquake sequences and provides insight into its application in other nonlinear processes with uncertain parameters.</description><subject>Analysis</subject><subject>Bias</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Earthquake forecasting</subject><subject>Earthquake prediction</subject><subject>Earthquakes</subject><subject>Error correction</subject><subject>Estimates</subject><subject>Fault lines</subject><subject>Friction</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Modelling</subject><subject>Parameter estimation</subject><subject>Parameter uncertainty</subject><subject>Physics</subject><subject>Process parameters</subject><subject>Resampling</subject><subject>Seismic activity</subject><subject>Seismology</subject><subject>Shear stress</subject><subject>State estimation</subject><issn>1607-7946</issn><issn>1023-5809</issn><issn>1607-7946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkc2LFDEQxRtRcF09ew148tC7qSTdmRyXRdeBhQU_zqHy1Wac7swmadD_3qwjugNLHVIpfvV4xeu6t0AvBlDicjlMPac9UOgZZfxZdwYjlb1UYnz-qH_ZvSplRymIYWRn3c3dQg6YcfbVZ2IiFhIX4jHX7_cr_vCk-PvVL9aTOTm_L2QtcZmIw4oES4lz3GONaXndvQi4L_7N3_e8-_bxw9frT_3t3c32-uq2t0LK2psgB8pHC6MMjm-MNUZw8AKBu2Ccs0Yo8Ix5YdgAQ1BCCM430plhVNDY82571HUJd_qQ44z5l04Y9Z9BypNu3qPde72x0jNuQ-BqEBYADUWrggwMVUBhm9a7o9Yhp3ZkqXqX1rw0-5pJNTDgQMV_asImGpeQakY7x2L1lWzuFB2ANeriCaqV83O0afEhtvnJwvuThcZU_7NOuJait18-n7KXR9bmVEr24d_hQPVD-LqFrzltX9AP4fPfCqCgGA</recordid><startdate>20230405</startdate><enddate>20230405</enddate><creator>Banerjee, Arundhuti</creator><creator>van Dinther, Ylona</creator><creator>Vossepoel, Femke C</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3391-6651</orcidid></search><sort><creationdate>20230405</creationdate><title>On parameter bias in earthquake sequence models using data assimilation</title><author>Banerjee, Arundhuti ; van Dinther, Ylona ; Vossepoel, Femke C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-bf75036c167fd38bcbb431e4a13dfbddcb491e22e4b2515f94443387db5691b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Bias</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Earthquake forecasting</topic><topic>Earthquake prediction</topic><topic>Earthquakes</topic><topic>Error correction</topic><topic>Estimates</topic><topic>Fault lines</topic><topic>Friction</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Modelling</topic><topic>Parameter estimation</topic><topic>Parameter uncertainty</topic><topic>Physics</topic><topic>Process parameters</topic><topic>Resampling</topic><topic>Seismic activity</topic><topic>Seismology</topic><topic>Shear stress</topic><topic>State estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banerjee, Arundhuti</creatorcontrib><creatorcontrib>van Dinther, Ylona</creatorcontrib><creatorcontrib>Vossepoel, Femke C</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nonlinear processes in geophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banerjee, Arundhuti</au><au>van Dinther, Ylona</au><au>Vossepoel, Femke C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On parameter bias in earthquake sequence models using data assimilation</atitle><jtitle>Nonlinear processes in geophysics</jtitle><date>2023-04-05</date><risdate>2023</risdate><volume>30</volume><issue>2</issue><spage>101</spage><epage>115</epage><pages>101-115</pages><issn>1607-7946</issn><issn>1023-5809</issn><eissn>1607-7946</eissn><abstract>The feasibility of physics-based forecasting of earthquakes depends on how well models can be calibrated to represent earthquake scenarios given uncertainties in both models and data. We investigate whether data assimilation can estimate current and future fault states, i.e., slip rate and shear stress, in the presence of a bias in the friction parameter. We perform state estimation as well as combined state-parameter estimation using a sequential-importance resampling particle filter in a zero-dimensional (0D) generalization of the Burridge–Knopoff spring–block model with rate-and-state friction. Minor changes in the friction parameter ϵ can lead to different state trajectories and earthquake characteristics. The performance of data assimilation with respect to estimating the fault state in the presence of a parameter bias in ϵ depends on the magnitude of the bias. A small parameter bias in ϵ (+3 %) can be compensated for very well using state estimation (R2 = 0.99), whereas an intermediate bias (−14 %) can only be partly compensated for using state estimation (R2 = 0.47). When increasing particle spread by accounting for model error and an additional resampling step, R2 increases to 0.61. However, when there is a large bias (−43 %) in ϵ, only state-parameter estimation can fully account for the parameter bias (R2 = 0.97). Thus, simultaneous state and parameter estimation effectively separates the error contributions from friction and shear stress to correctly estimate the current and future shear stress and slip rate. This illustrates the potential of data assimilation for the estimation of earthquake sequences and provides insight into its application in other nonlinear processes with uncertain parameters.</abstract><cop>Gottingen</cop><pub>Copernicus GmbH</pub><doi>10.5194/npg-30-101-2023</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3391-6651</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1607-7946
ispartof Nonlinear processes in geophysics, 2023-04, Vol.30 (2), p.101-115
issn 1607-7946
1023-5809
1607-7946
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_8c7e23cff3954c11ab0ac9f7f2a9fa4c
source Publicly Available Content Database; EZB Electronic Journals Library
subjects Analysis
Bias
Data assimilation
Data collection
Earthquake forecasting
Earthquake prediction
Earthquakes
Error correction
Estimates
Fault lines
Friction
Mathematical models
Methods
Modelling
Parameter estimation
Parameter uncertainty
Physics
Process parameters
Resampling
Seismic activity
Seismology
Shear stress
State estimation
title On parameter bias in earthquake sequence models using data assimilation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A33%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20parameter%20bias%20in%20earthquake%20sequence%20models%20using%20data%20assimilation&rft.jtitle=Nonlinear%20processes%20in%20geophysics&rft.au=Banerjee,%20Arundhuti&rft.date=2023-04-05&rft.volume=30&rft.issue=2&rft.spage=101&rft.epage=115&rft.pages=101-115&rft.issn=1607-7946&rft.eissn=1607-7946&rft_id=info:doi/10.5194/npg-30-101-2023&rft_dat=%3Cgale_doaj_%3EA744390512%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c477t-bf75036c167fd38bcbb431e4a13dfbddcb491e22e4b2515f94443387db5691b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2795213104&rft_id=info:pmid/&rft_galeid=A744390512&rfr_iscdi=true