Loading…
On parameter bias in earthquake sequence models using data assimilation
The feasibility of physics-based forecasting of earthquakes depends on how well models can be calibrated to represent earthquake scenarios given uncertainties in both models and data. We investigate whether data assimilation can estimate current and future fault states, i.e., slip rate and shear str...
Saved in:
Published in: | Nonlinear processes in geophysics 2023-04, Vol.30 (2), p.101-115 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c477t-bf75036c167fd38bcbb431e4a13dfbddcb491e22e4b2515f94443387db5691b43 |
---|---|
cites | cdi_FETCH-LOGICAL-c477t-bf75036c167fd38bcbb431e4a13dfbddcb491e22e4b2515f94443387db5691b43 |
container_end_page | 115 |
container_issue | 2 |
container_start_page | 101 |
container_title | Nonlinear processes in geophysics |
container_volume | 30 |
creator | Banerjee, Arundhuti van Dinther, Ylona Vossepoel, Femke C |
description | The feasibility of physics-based forecasting of earthquakes depends on how well models can be calibrated to represent earthquake scenarios given
uncertainties in both models and data. We investigate whether data assimilation can estimate current and future fault states, i.e., slip rate and
shear stress, in the presence of a bias in the friction parameter. We perform state estimation as well as combined state-parameter estimation using
a sequential-importance resampling particle filter in a zero-dimensional (0D) generalization of the Burridge–Knopoff spring–block model with rate-and-state
friction. Minor changes in the friction parameter ϵ can lead to different state trajectories and earthquake characteristics. The
performance of data assimilation with respect to estimating the fault state in the presence of a parameter bias in ϵ depends on the magnitude of the
bias. A small parameter bias in ϵ (+3 %) can be compensated for very well using state estimation (R2 = 0.99), whereas an
intermediate bias (−14 %) can only be partly compensated for using state estimation (R2 = 0.47). When increasing particle spread by accounting for model error and
an additional resampling step, R2 increases to 0.61. However, when there is a large bias (−43 %) in ϵ, only state-parameter
estimation can fully account for the parameter bias (R2 = 0.97). Thus, simultaneous state and parameter estimation effectively separates the
error contributions from friction and shear stress to correctly estimate the current and future shear stress and slip rate. This illustrates the
potential of data assimilation for the estimation of earthquake sequences and provides insight into its application in other nonlinear processes with
uncertain parameters. |
doi_str_mv | 10.5194/npg-30-101-2023 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8c7e23cff3954c11ab0ac9f7f2a9fa4c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A744390512</galeid><doaj_id>oai_doaj_org_article_8c7e23cff3954c11ab0ac9f7f2a9fa4c</doaj_id><sourcerecordid>A744390512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-bf75036c167fd38bcbb431e4a13dfbddcb491e22e4b2515f94443387db5691b43</originalsourceid><addsrcrecordid>eNptkc2LFDEQxRtRcF09ew148tC7qSTdmRyXRdeBhQU_zqHy1Wac7swmadD_3qwjugNLHVIpfvV4xeu6t0AvBlDicjlMPac9UOgZZfxZdwYjlb1UYnz-qH_ZvSplRymIYWRn3c3dQg6YcfbVZ2IiFhIX4jHX7_cr_vCk-PvVL9aTOTm_L2QtcZmIw4oES4lz3GONaXndvQi4L_7N3_e8-_bxw9frT_3t3c32-uq2t0LK2psgB8pHC6MMjm-MNUZw8AKBu2Ccs0Yo8Ix5YdgAQ1BCCM430plhVNDY82571HUJd_qQ44z5l04Y9Z9BypNu3qPde72x0jNuQ-BqEBYADUWrggwMVUBhm9a7o9Yhp3ZkqXqX1rw0-5pJNTDgQMV_asImGpeQakY7x2L1lWzuFB2ANeriCaqV83O0afEhtvnJwvuThcZU_7NOuJait18-n7KXR9bmVEr24d_hQPVD-LqFrzltX9AP4fPfCqCgGA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795213104</pqid></control><display><type>article</type><title>On parameter bias in earthquake sequence models using data assimilation</title><source>Publicly Available Content Database</source><source>EZB Electronic Journals Library</source><creator>Banerjee, Arundhuti ; van Dinther, Ylona ; Vossepoel, Femke C</creator><creatorcontrib>Banerjee, Arundhuti ; van Dinther, Ylona ; Vossepoel, Femke C</creatorcontrib><description>The feasibility of physics-based forecasting of earthquakes depends on how well models can be calibrated to represent earthquake scenarios given
uncertainties in both models and data. We investigate whether data assimilation can estimate current and future fault states, i.e., slip rate and
shear stress, in the presence of a bias in the friction parameter. We perform state estimation as well as combined state-parameter estimation using
a sequential-importance resampling particle filter in a zero-dimensional (0D) generalization of the Burridge–Knopoff spring–block model with rate-and-state
friction. Minor changes in the friction parameter ϵ can lead to different state trajectories and earthquake characteristics. The
performance of data assimilation with respect to estimating the fault state in the presence of a parameter bias in ϵ depends on the magnitude of the
bias. A small parameter bias in ϵ (+3 %) can be compensated for very well using state estimation (R2 = 0.99), whereas an
intermediate bias (−14 %) can only be partly compensated for using state estimation (R2 = 0.47). When increasing particle spread by accounting for model error and
an additional resampling step, R2 increases to 0.61. However, when there is a large bias (−43 %) in ϵ, only state-parameter
estimation can fully account for the parameter bias (R2 = 0.97). Thus, simultaneous state and parameter estimation effectively separates the
error contributions from friction and shear stress to correctly estimate the current and future shear stress and slip rate. This illustrates the
potential of data assimilation for the estimation of earthquake sequences and provides insight into its application in other nonlinear processes with
uncertain parameters.</description><identifier>ISSN: 1607-7946</identifier><identifier>ISSN: 1023-5809</identifier><identifier>EISSN: 1607-7946</identifier><identifier>DOI: 10.5194/npg-30-101-2023</identifier><language>eng</language><publisher>Gottingen: Copernicus GmbH</publisher><subject>Analysis ; Bias ; Data assimilation ; Data collection ; Earthquake forecasting ; Earthquake prediction ; Earthquakes ; Error correction ; Estimates ; Fault lines ; Friction ; Mathematical models ; Methods ; Modelling ; Parameter estimation ; Parameter uncertainty ; Physics ; Process parameters ; Resampling ; Seismic activity ; Seismology ; Shear stress ; State estimation</subject><ispartof>Nonlinear processes in geophysics, 2023-04, Vol.30 (2), p.101-115</ispartof><rights>COPYRIGHT 2023 Copernicus GmbH</rights><rights>2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-bf75036c167fd38bcbb431e4a13dfbddcb491e22e4b2515f94443387db5691b43</citedby><cites>FETCH-LOGICAL-c477t-bf75036c167fd38bcbb431e4a13dfbddcb491e22e4b2515f94443387db5691b43</cites><orcidid>0000-0002-3391-6651</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2795213104/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2795213104?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Banerjee, Arundhuti</creatorcontrib><creatorcontrib>van Dinther, Ylona</creatorcontrib><creatorcontrib>Vossepoel, Femke C</creatorcontrib><title>On parameter bias in earthquake sequence models using data assimilation</title><title>Nonlinear processes in geophysics</title><description>The feasibility of physics-based forecasting of earthquakes depends on how well models can be calibrated to represent earthquake scenarios given
uncertainties in both models and data. We investigate whether data assimilation can estimate current and future fault states, i.e., slip rate and
shear stress, in the presence of a bias in the friction parameter. We perform state estimation as well as combined state-parameter estimation using
a sequential-importance resampling particle filter in a zero-dimensional (0D) generalization of the Burridge–Knopoff spring–block model with rate-and-state
friction. Minor changes in the friction parameter ϵ can lead to different state trajectories and earthquake characteristics. The
performance of data assimilation with respect to estimating the fault state in the presence of a parameter bias in ϵ depends on the magnitude of the
bias. A small parameter bias in ϵ (+3 %) can be compensated for very well using state estimation (R2 = 0.99), whereas an
intermediate bias (−14 %) can only be partly compensated for using state estimation (R2 = 0.47). When increasing particle spread by accounting for model error and
an additional resampling step, R2 increases to 0.61. However, when there is a large bias (−43 %) in ϵ, only state-parameter
estimation can fully account for the parameter bias (R2 = 0.97). Thus, simultaneous state and parameter estimation effectively separates the
error contributions from friction and shear stress to correctly estimate the current and future shear stress and slip rate. This illustrates the
potential of data assimilation for the estimation of earthquake sequences and provides insight into its application in other nonlinear processes with
uncertain parameters.</description><subject>Analysis</subject><subject>Bias</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Earthquake forecasting</subject><subject>Earthquake prediction</subject><subject>Earthquakes</subject><subject>Error correction</subject><subject>Estimates</subject><subject>Fault lines</subject><subject>Friction</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Modelling</subject><subject>Parameter estimation</subject><subject>Parameter uncertainty</subject><subject>Physics</subject><subject>Process parameters</subject><subject>Resampling</subject><subject>Seismic activity</subject><subject>Seismology</subject><subject>Shear stress</subject><subject>State estimation</subject><issn>1607-7946</issn><issn>1023-5809</issn><issn>1607-7946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkc2LFDEQxRtRcF09ew148tC7qSTdmRyXRdeBhQU_zqHy1Wac7swmadD_3qwjugNLHVIpfvV4xeu6t0AvBlDicjlMPac9UOgZZfxZdwYjlb1UYnz-qH_ZvSplRymIYWRn3c3dQg6YcfbVZ2IiFhIX4jHX7_cr_vCk-PvVL9aTOTm_L2QtcZmIw4oES4lz3GONaXndvQi4L_7N3_e8-_bxw9frT_3t3c32-uq2t0LK2psgB8pHC6MMjm-MNUZw8AKBu2Ccs0Yo8Ix5YdgAQ1BCCM430plhVNDY82571HUJd_qQ44z5l04Y9Z9BypNu3qPde72x0jNuQ-BqEBYADUWrggwMVUBhm9a7o9Yhp3ZkqXqX1rw0-5pJNTDgQMV_asImGpeQakY7x2L1lWzuFB2ANeriCaqV83O0afEhtvnJwvuThcZU_7NOuJait18-n7KXR9bmVEr24d_hQPVD-LqFrzltX9AP4fPfCqCgGA</recordid><startdate>20230405</startdate><enddate>20230405</enddate><creator>Banerjee, Arundhuti</creator><creator>van Dinther, Ylona</creator><creator>Vossepoel, Femke C</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3391-6651</orcidid></search><sort><creationdate>20230405</creationdate><title>On parameter bias in earthquake sequence models using data assimilation</title><author>Banerjee, Arundhuti ; van Dinther, Ylona ; Vossepoel, Femke C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-bf75036c167fd38bcbb431e4a13dfbddcb491e22e4b2515f94443387db5691b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Bias</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Earthquake forecasting</topic><topic>Earthquake prediction</topic><topic>Earthquakes</topic><topic>Error correction</topic><topic>Estimates</topic><topic>Fault lines</topic><topic>Friction</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Modelling</topic><topic>Parameter estimation</topic><topic>Parameter uncertainty</topic><topic>Physics</topic><topic>Process parameters</topic><topic>Resampling</topic><topic>Seismic activity</topic><topic>Seismology</topic><topic>Shear stress</topic><topic>State estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banerjee, Arundhuti</creatorcontrib><creatorcontrib>van Dinther, Ylona</creatorcontrib><creatorcontrib>Vossepoel, Femke C</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nonlinear processes in geophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banerjee, Arundhuti</au><au>van Dinther, Ylona</au><au>Vossepoel, Femke C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On parameter bias in earthquake sequence models using data assimilation</atitle><jtitle>Nonlinear processes in geophysics</jtitle><date>2023-04-05</date><risdate>2023</risdate><volume>30</volume><issue>2</issue><spage>101</spage><epage>115</epage><pages>101-115</pages><issn>1607-7946</issn><issn>1023-5809</issn><eissn>1607-7946</eissn><abstract>The feasibility of physics-based forecasting of earthquakes depends on how well models can be calibrated to represent earthquake scenarios given
uncertainties in both models and data. We investigate whether data assimilation can estimate current and future fault states, i.e., slip rate and
shear stress, in the presence of a bias in the friction parameter. We perform state estimation as well as combined state-parameter estimation using
a sequential-importance resampling particle filter in a zero-dimensional (0D) generalization of the Burridge–Knopoff spring–block model with rate-and-state
friction. Minor changes in the friction parameter ϵ can lead to different state trajectories and earthquake characteristics. The
performance of data assimilation with respect to estimating the fault state in the presence of a parameter bias in ϵ depends on the magnitude of the
bias. A small parameter bias in ϵ (+3 %) can be compensated for very well using state estimation (R2 = 0.99), whereas an
intermediate bias (−14 %) can only be partly compensated for using state estimation (R2 = 0.47). When increasing particle spread by accounting for model error and
an additional resampling step, R2 increases to 0.61. However, when there is a large bias (−43 %) in ϵ, only state-parameter
estimation can fully account for the parameter bias (R2 = 0.97). Thus, simultaneous state and parameter estimation effectively separates the
error contributions from friction and shear stress to correctly estimate the current and future shear stress and slip rate. This illustrates the
potential of data assimilation for the estimation of earthquake sequences and provides insight into its application in other nonlinear processes with
uncertain parameters.</abstract><cop>Gottingen</cop><pub>Copernicus GmbH</pub><doi>10.5194/npg-30-101-2023</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3391-6651</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1607-7946 |
ispartof | Nonlinear processes in geophysics, 2023-04, Vol.30 (2), p.101-115 |
issn | 1607-7946 1023-5809 1607-7946 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_8c7e23cff3954c11ab0ac9f7f2a9fa4c |
source | Publicly Available Content Database; EZB Electronic Journals Library |
subjects | Analysis Bias Data assimilation Data collection Earthquake forecasting Earthquake prediction Earthquakes Error correction Estimates Fault lines Friction Mathematical models Methods Modelling Parameter estimation Parameter uncertainty Physics Process parameters Resampling Seismic activity Seismology Shear stress State estimation |
title | On parameter bias in earthquake sequence models using data assimilation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A33%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20parameter%20bias%20in%20earthquake%20sequence%20models%20using%20data%20assimilation&rft.jtitle=Nonlinear%20processes%20in%20geophysics&rft.au=Banerjee,%20Arundhuti&rft.date=2023-04-05&rft.volume=30&rft.issue=2&rft.spage=101&rft.epage=115&rft.pages=101-115&rft.issn=1607-7946&rft.eissn=1607-7946&rft_id=info:doi/10.5194/npg-30-101-2023&rft_dat=%3Cgale_doaj_%3EA744390512%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c477t-bf75036c167fd38bcbb431e4a13dfbddcb491e22e4b2515f94443387db5691b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2795213104&rft_id=info:pmid/&rft_galeid=A744390512&rfr_iscdi=true |