Loading…

Dual-Quaternion Analytic LQR Control Design for Spacecraft Proximity Operations

Proximity operations offer aggregate capability for a spacecraft operating in close proximity to another spacecraft, to perform on-orbit satellite servicing, or to a space object to perform debris removal. To utilize a spacecraft performing such advanced maneuvering operations and perceiving of the...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2021-05, Vol.21 (11), p.3597
Main Authors: Stanfield, Kyl, Bani Younes, Ahmad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Proximity operations offer aggregate capability for a spacecraft operating in close proximity to another spacecraft, to perform on-orbit satellite servicing, or to a space object to perform debris removal. To utilize a spacecraft performing such advanced maneuvering operations and perceiving of the relative motion of a foreign spacecraft, these trajectories must be modeled accurately based on the coupled translational and rotational dynamics models. This paper presents work towards exploiting the dual-quaternion representations of spacecraft relative dynamics for proximity operations and developing a sub-optimal control law for efficient and robust maneuvers. A linearized model using dual-quaternions for the proximity operation was obtained, and its stability was verified using Monte Carlo simulations for the linear quadratic regulator solution. A sub-optimal control law using generalized higher order feedback gains in dual-quaternion form was developed based on small error approximations for the proximity operation and also verified through Monte Carlo simulations. Necessary information needed to understand the theory behind the use of the dual-quaternion is also overviewed within this paper, including the validity of using the dual-quaternions against their Cartesian or quaternion equivalents.
ISSN:1424-8220
1424-8220
DOI:10.3390/s21113597