Loading…
Multiplicity of positive solutions for a class of singular elliptic equations with critical Sobolev exponent and Kirchhoff-type nonlocal term
We study a class of singular elliptic equations involving critical Sobolev exponent and Kirchhoff-type nonlocal term $-\big(a+b\int_{\Omega}|\nabla u|^2dx\big)\Delta u=u^{5}+g(x,u)+\lambda u^{-\gamma}$, $x\in\Omega, u>0$, $x\in\Omega$, $u=0$, $x\in\partial\Omega$, where $\Omega\subset \mathbb{R}^...
Saved in:
Published in: | Electronic journal of qualitative theory of differential equations 2018-01, Vol.2018 (100), p.1-20 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study a class of singular elliptic equations involving critical Sobolev exponent and Kirchhoff-type nonlocal term $-\big(a+b\int_{\Omega}|\nabla u|^2dx\big)\Delta u=u^{5}+g(x,u)+\lambda u^{-\gamma}$, $x\in\Omega, u>0$, $x\in\Omega$, $u=0$, $x\in\partial\Omega$, where $\Omega\subset \mathbb{R}^{3}$ is a bounded domain, $a,b,\lambda>0,~0 |
---|---|
ISSN: | 1417-3875 1417-3875 |
DOI: | 10.14232/ejqtde.2018.1.100 |