Loading…
Intrapulse Modulation Radar Signal Recognition Using CNN with Second-Order STFT-Based Synchrosqueezing Transform
Intrapulse modulation classification of radar signals plays an important role in modern electronic reconnaissance, countermeasures, etc. In this paper, to improve the recognition rate at low signal-to-noise ratio (SNR), we propose a recognition method using the second-order short-time Fourier transf...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2024-07, Vol.16 (14), p.2582 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Intrapulse modulation classification of radar signals plays an important role in modern electronic reconnaissance, countermeasures, etc. In this paper, to improve the recognition rate at low signal-to-noise ratio (SNR), we propose a recognition method using the second-order short-time Fourier transform (STFT)-based synchrosqueezing transform (FSST2) combined with a modified convolution neural network, which we name MeNet. In particular, the radar signals are first preprocessed via the time–frequency analysis and STFT-based FSST2. Then, the informative features of the time–frequency images (TFIs) are deeply learned and classified through the MeNet with several specific convolutional blocks. The simulation results show that the overall recognition rate for seven types of intrapulse modulation radar signals can reach 95.6%, even when the SNR is −12 dB. Compared with other networks, the excellent recognition rate proves the superiority of our method. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs16142582 |