Loading…

Micromechanical Study of Hyperacetylated Nucleosomes Using Single Molecule Transverse Magnetic Tweezers

Nucleosomes are stable complexes of DNA and histone proteins that are essential for the proper functioning of the genome. These structures must be unwrapped and disassembled for processes such as gene expression, replication, and repair. Histone post-translational modifications (PTMs) are known to p...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2023-03, Vol.24 (7), p.6188
Main Authors: Gaire, Santosh, Fabian, Jr, Roberto L, Adhikari, Raghabendra, Tuma, Pamela L, Pegg, Ian L, Sarkar, Abhijit
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nucleosomes are stable complexes of DNA and histone proteins that are essential for the proper functioning of the genome. These structures must be unwrapped and disassembled for processes such as gene expression, replication, and repair. Histone post-translational modifications (PTMs) are known to play a significant role in regulating the structural changes of nucleosomes. However, the underlying mechanisms by which these modifications function remain unclear. In this study, we report the results of single molecule micromanipulation experiments on DNA-protein complexes composed of hyperacetylated histone proteins using transverse magnetic tweezers. The experiments were conducted by pre-extending -DNA with a force less than 4 pN before introducing hyperacetylated histones into the sample chamber. The DNA shortened as the histones formed complexes with it and the nucleosome arrays were then exposed to increasing tension, resulting in quantized changes in the DNA's extension with step sizes of (integral multiples of) ~50 nm. We also compared results of experiments using PTM histones and native histones with data collected for both types of histones for the same force ranges (2-80 pN) and loading rates. Our data show that hyperacetylated nucleosomes require an unbinding force of around ~2.5 pN, which is similar to that required for native histones. Moreover, we identified clear differences between the step-size distributions of native and hyperacetylated histones and found that in contrast to tethers reconstituted with native histones, the majority of nucleosomes in tethers compacted with hyperacetylated histones underwent disassembly at forces significantly lower than 6 pN.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms24076188