Loading…

Depolymerization of Waste Plastic Using Bubble Column for Nano Alumina Blended Coating

In this study, we aimed to figure out how the depolymerization of polyethylene terephthalate produces monomers, dimers, trimers, and other oligomers of bis (2-hydroxyethyl) terephthalate. Polymerization was achieved in a bubble column reactor with 0.05 wt% 40–50 nm magnesium oxide nanoparticle as a...

Full description

Saved in:
Bibliographic Details
Published in:Fluids (Basel) 2022-04, Vol.7 (4), p.127
Main Authors: Alzuhairi, Mohammed, Al-Kaisy, Hanaa, Khdheer, Mena
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, we aimed to figure out how the depolymerization of polyethylene terephthalate produces monomers, dimers, trimers, and other oligomers of bis (2-hydroxyethyl) terephthalate. Polymerization was achieved in a bubble column reactor with 0.05 wt% 40–50 nm magnesium oxide nanoparticle as a catalyst. A bubble column reactor was used to perform the recycling process at the boiling point of ethylene glycol and atmospheric pressure. Depolymerized polyethylene terephthalate (DPET) was mixed with poly(methyl methacrylate) and reinforced with 1% Nano Al2O3. The nanoparticles acted as a composite coating in low carbon steel protection. Adhesion strength and mechanical and structural properties were investigated for the composite, and the average coating thickness was 28.39 µm. The results showed that the hardness and adhesion forces between the substrate and composite coating increased with an increase in the amounts of DPET and nano-Al2O3 per polymer resin. On the other hand, the thermal conductivity of the composite coating decreased with the addition of DPET because of an increase in the end chain movement in the composite coating induced by the retardant and an increase in cross-linking force. Furthermore, the bubble column demonstrated outstanding heat and mass transfer phenomena that reduced the reaction time to just 40 min for complete depolymerzation and also reduced energy consumption.
ISSN:2311-5521
2311-5521
DOI:10.3390/fluids7040127