Loading…

A Multi-Level Distributed Computing Approach to XDraw Viewshed Analysis Using Apache Spark

Viewshed analysis is a terrain visibility computation method based on the digital elevation model (DEM). With the rapid growth of remote sensing and data collection technologies, the volume of large-scale raster DEM data has reached a great size (ZB). However, the data storage and GIS analysis based...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2023-01, Vol.15 (3), p.761
Main Authors: Dong, Junduo, Zhang, Jianbo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Viewshed analysis is a terrain visibility computation method based on the digital elevation model (DEM). With the rapid growth of remote sensing and data collection technologies, the volume of large-scale raster DEM data has reached a great size (ZB). However, the data storage and GIS analysis based on such large-scale digital data volume become extra difficult. The usually distributed approaches based on Apache Hadoop and Spark can efficiently handle the viewshed analysis computation of large-scale DEM data, but there are still bottleneck and precision problems. In this article, we present a multi-level distributed XDraw (ML-XDraw) algorithm with Apache Spark to handle the viewshed analysis of large DEM data. The ML-XDraw algorithm mainly consists of 3 parts: (1) designing the XDraw algorithm into a multi-level distributed computing process, (2) introducing a multi-level data decomposition strategy to solve the calculating bottleneck problem of the cluster’s executor, and (3) proposing a boundary approximate calculation strategy to solve the precision loss problem in calculation near the boundary. Experiments show that the ML-XDraw algorithm adequately addresses the above problems and achieves better speed-up and accuracy as the volume of raster DEM data increases drastically.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs15030761