Loading…

Tuning the particle size and morphology of high energetic material nanocrystals

Morphology controlled synthesis of nanoparticles of powerful high energetic compounds (HECs) such as 1,3,5-trinitro-1,3,5-triazinane (RDX) and 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) were achieved by a simple solvent-antisolvent interaction (SAI) method at 70 ℃. The effects of different solvent...

Full description

Saved in:
Bibliographic Details
Published in:Defence Technology(防务技术) 2015-12, Vol.11 (4), p.382-389
Main Authors: Kumar, Raj, Siril, Prem Felix, Soni, Pramod
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Morphology controlled synthesis of nanoparticles of powerful high energetic compounds (HECs) such as 1,3,5-trinitro-1,3,5-triazinane (RDX) and 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) were achieved by a simple solvent-antisolvent interaction (SAI) method at 70 ℃. The effects of different solvents on particle size and morphology of the prepared nano-HECs were studied systematically. Particle size and morphology of the nano-HECs was characterized using field emission scanning electron microscopy (FE-SEM) imaging. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy studies revealed that RDX and HMX were precipitated in their most stable poly- morphic forms, i.e. α and β, respectively. Thermogravimetric analysis coupled with differential scanning calorimetry (TGA-DSC) studies showed that the thermal response of the nanoparticles was similar to the respective raw-HECs. HEC nanoparticles with spherical and rod shaped morphology were observed under different solvent conditions. The mean particle size also varied considerably with the use of different solvents.
ISSN:2214-9147
2214-9147
DOI:10.1016/j.dt.2015.07.002