Loading…
Noncommutative symmetric functions with matrix parameters
We define new families of noncommutative symmetric functions and quasi-symmetric functions depending on two matrices of parameters, and more generally on parameters associated with paths in a binary tree. Appropriate specializations of both matrices then give back the two-vector families of Hivert,...
Saved in:
Published in: | Discrete mathematics and theoretical computer science 2012-01, Vol.DMTCS Proceedings vol. AR,... (Proceedings), p.515-526 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We define new families of noncommutative symmetric functions and quasi-symmetric functions depending on two matrices of parameters, and more generally on parameters associated with paths in a binary tree. Appropriate specializations of both matrices then give back the two-vector families of Hivert, Lascoux, and Thibon and the noncommutative Macdonald functions of Bergeron and Zabrocki.
Nous définissons de nouvelles familles de fonctions symétriques non-commutatives et de fonctions quasi-symétriques, dépendant de deux matrices de paramètres, et plus généralement, de paramètres associés à des chemins dans un arbre binaire. Pour des spécialisations appropriées, on retrouve les familles à deux vecteurs de Hivert-Lascoux-Thibon et les fonctions de Macdonald non-commutatives de Bergeron-Zabrocki. |
---|---|
ISSN: | 1365-8050 1462-7264 1365-8050 |
DOI: | 10.46298/dmtcs.3059 |