Loading…
Guided Lamb Wave Array Time-Delay-Based MUSIC Algorithm for Impact Imaging
Composite materials, valued in aerospace for their stiffness, strength and lightness, require impact monitoring for structural health, especially against low-velocity impacts. The MUSIC algorithm, known for efficient directional scanning and easy sensor deployment, is gaining prominence in this area...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2024-03, Vol.24 (6), p.1882 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Composite materials, valued in aerospace for their stiffness, strength and lightness, require impact monitoring for structural health, especially against low-velocity impacts. The MUSIC algorithm, known for efficient directional scanning and easy sensor deployment, is gaining prominence in this area. However, in practical engineering applications, the broadband characteristics of impact response signals and the time delay errors in array elements' signal reception lead to inconsistencies between the steering vector and the actual signal subspace, affecting the precision of the MUSIC impact localization method. Furthermore, the anisotropy of composite materials results in time delay differences between array elements in different directions. If the MUSIC algorithm uses a fixed velocity value, this also introduces time delay errors, further reducing the accuracy of localization. Addressing these challenges, this paper proposes an innovative MUSIC algorithm for impact imaging using a guided Lamb wave array, with an emphasis on time delay management. This approach focuses on the extraction of high-energy, single-frequency components from impact response signals, ensuring accurate time delay measurement across array elements and enhancing noise resistance. It also calculates the average velocity of single-frequency components in varying directions for an initial impact angle estimation. This estimated angle then guides the selection of a specific single-frequency velocity, culminating in precise impact position localization. The experimental evaluation, employing equidistantly spaced array elements to capture impact response signals, assessed the effectiveness of the proposed method in accurately determining array time delays. Furthermore, impact localization tests on reinforced composite structures were conducted, with the results indicating high precision in pinpointing impact locations. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s24061882 |