Loading…

Computer vision for eye diseases detection using pre‐trained deep learning techniques and raspberry Pi

Early diagnosis of eye diseases is very important to prevent visual impairment and guide appropriate treatment methods. This paper presents a unique approach that can detect numerous eye diseases automatically. Initially, this approach used the pre‐trained ImageNet models that provides various pre‐t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of engineering (Stevenage, England) England), 2024-07, Vol.2024 (7), p.n/a
Main Authors: Al‐Naji, Ali, Khalid, Ghaidaa A., Mahmood, Mustafa F., Chahl, Javaan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Early diagnosis of eye diseases is very important to prevent visual impairment and guide appropriate treatment methods. This paper presents a unique approach that can detect numerous eye diseases automatically. Initially, this approach used the pre‐trained ImageNet models that provides various pre‐trained models for training the acquired data. The existing data sets are composed of 645 data images acquired clinically, represented by two groups of subjects as healthy and others holding the proposed eye defect like cataracts, foreign bodies, glaucoma, subconjunctival haemorrhage, and viral conjunctivitis. Followed by comparisons of the pre‐trained model's coefficients and prediction performance. Later, the first‐class execution model is integrated within the Raspberry Pi staging and the real‐time digital camera detection. The evaluation process used the confusion matrix, model accuracy, precision factor, recall coefficient, F1 score, and the Matthews Correlation Coefficient (MCC). Resulting in the performance of these pre‐trained ImageNet models used in this study represented by 93% (InceptionResNetV2), 90% (MobileNet), 86% (Residual Network ResNet50), 85% (InceptionV3), 78% (Visual Geometry Group VGG19), and 72% (Neural Architecture Search Network NASNetMobile). The results show that the InceptionResNetV2 achieved the highest performance. This proposed approach shows its efficiency and strength by early detection of the subject's unhealthy eyes through real‐time monitoring in the field of ophthalmology. The paper presents a new approach that uses pre‐trained ImageNet models to automatically detect various eye diseases, including cataracts, foreign bodies, glaucoma, subconjunctival haemorrhage, and viral conjunctivitis, achieving remarkable performance, with the InceptionResNetV2 model showing the highest accuracy of 93%. This proposed method has proven effective in early detection through real‐time monitoring in the field of ophthalmology.
ISSN:2051-3305
2051-3305
DOI:10.1049/tje2.12410