Loading…

Droplet-based microfluidic platform for high-throughput screening of Streptomyces

Streptomyces are one of the most important industrial microorganisms for the production of proteins and small-molecule drugs. Previously reported flow cytometry-based screening methods can only screen spores or protoplasts released from mycelium, which do not represent the filamentous stationary pha...

Full description

Saved in:
Bibliographic Details
Published in:Communications biology 2021-05, Vol.4 (1), p.647-647, Article 647
Main Authors: Tu, Ran, Zhang, Yue, Hua, Erbing, Bai, Likuan, Huang, Huamei, Yun, Kaiyue, Wang, Meng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Streptomyces are one of the most important industrial microorganisms for the production of proteins and small-molecule drugs. Previously reported flow cytometry-based screening methods can only screen spores or protoplasts released from mycelium, which do not represent the filamentous stationary phase Streptomyces used in industrial cultivation. Here we show a droplet-based microfluidic platform to facilitate more relevant, reliable and rapid screening of Streptomyces mycelium, and achieved an enrichment ratio of up to 334.2. Using this platform, we rapidly characterized a series of native and heterologous constitutive promoters in Streptomyces lividans 66 in droplets, and efficiently screened out a set of engineered promoter variants with desired strengths from two synthetic promoter libraries. We also successfully screened out several hyperproducers of cellulases from a random S. lividans 66 mutant library, which had 69.2–111.4% greater cellulase production than the wild type. Our method provides a fast, simple, and powerful solution for the industrial engineering and screening of Streptomyces in more industry-relevant conditions. Streptomyces are an important filamentous bacterium genus in industry, but most of the high-throughput techniques so far can only separate spores or protoplasts. Tu et al. develop an encapsulating method that allows screening of Streptomyces in the filamentous, stationary phase.
ISSN:2399-3642
2399-3642
DOI:10.1038/s42003-021-02186-y