Loading…

Efficient recovery of functional biomolecules from shrimp (Litopenaeus vannamei) processing waste for food and health applications via a successive co-culture fermentation approach

This study developed a food-grade fermentation process that efficiently isolated proteins and minerals from shrimp-processing waste (SPW). The in vitro antioxidant and enzyme inhibitory effects of SPW hydrolysates obtained from the fermentation process were investigated. SPW broths were prepared fro...

Full description

Saved in:
Bibliographic Details
Published in:Current research in food science 2024-01, Vol.9, p.100850, Article 100850
Main Authors: Kemsawasd, Varongsiri, Karnpanit, Weeraya, Thangsiri, Sirinapa, Wongputtisin, Pairote, Kanpiengjai, Apinun, Khanongnuch, Chartchai, Suttisansanee, Uthaiwan, Santivarangkna, Chalat, Kittibunchakul, Suwapat
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study developed a food-grade fermentation process that efficiently isolated proteins and minerals from shrimp-processing waste (SPW). The in vitro antioxidant and enzyme inhibitory effects of SPW hydrolysates obtained from the fermentation process were investigated. SPW broths were prepared from the head (SPW-SH) and body carapace (SPW-SS) of Pacific white shrimp (Litopenaeus vannamei) and fermented using a 5-day successive co-culture fermentation approach with Bacillus amyloliquefaciens TISTR-1880 and Lactobacillus casei TBRC-388. This bacterial combination demonstrated optimal efficiency in extracting proteins (up to 93% deproteinization) and minerals (up to 83% demineralization) from SPW samples compared with other studied co-culture combinations. The resulting SPW-SH and SPW-SS hydrolysates were rich in proteins (∼70 and ∼59 g/100 g dry weight, respectively). They exhibited significantly enhanced antioxidant potential compared to their corresponding non-fermented controls at up to 2.3 and 3.7-fold higher, respectively as determined by the ORAC, FRAP, and DPPH radical scavenging assays. The two SPW hydrolysates also had significantly higher inhibitory activities against angiotensin-converting enzyme, α-amylase, and lipase than the controls, indicating their improved anti-hypertension, anti-diabetes, and anti-obesity properties, respectively; however, both SPW-SH and SPW-SS hydrolysates did not inhibit α-glucosidase at the tested concentrations. The SPW hydrolysates produced in this study showed high potential for use as functional ingredients in food and nutraceutical products. Knowledge gained from this study can promote the prospective valorization of industrial SPW as an inexpensive source of functional biomolecules for food-related applications using a fermentation approach. This will increase the commercial value of SPW and reduce the environmental impact. [Display omitted] •A food-grade fermentation process for shrimp-processing waste (SPW) was developed.•The process efficiently isolated proteins, minerals, and active molecules from SPW.•SPW hydrolysates yielding from fermentation were rich in proteins and antioxidants.•The hydrolysates inhibited the key enzymes associated with common chronic diseases.•The hydrolysates are applicable as functional ingredients in food-related products.
ISSN:2665-9271
2665-9271
DOI:10.1016/j.crfs.2024.100850