Loading…

Modeling of pneumococcal serogroup 10 capsular polysaccharide molecular conformations provides insight into epitopes and observed cross-reactivity

Streptococcus pneumoniae is an encapsulated gram-negative bacterium and a significant human pathogen . The capsular polysaccharide (CPS) is essential for virulence and a target antigen for vaccines. Although widespread introduction of pneumococcal conjugate vaccines (PCVs) has significantly reduced...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in molecular biosciences 2022-08, Vol.9, p.961532-961532
Main Authors: Richardson, Nicole I., Kuttel, Michelle M., Ravenscroft, Neil
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Streptococcus pneumoniae is an encapsulated gram-negative bacterium and a significant human pathogen . The capsular polysaccharide (CPS) is essential for virulence and a target antigen for vaccines. Although widespread introduction of pneumococcal conjugate vaccines (PCVs) has significantly reduced disease, the prevalence of non-vaccine serotypes has increased. On the basis of the CPS, S. pneumoniae serogroup 10 comprises four main serotypes 10A, 10B, 10C, and 10F; as well as the recently identified 10D. As it is the most prevalent, serotype 10A CPS has been included as a vaccine antigen in the next generation PCVs. Here we use molecular modeling to provide conformational rationales for the complex cross-reactivity reported between serotypes 10A, 10B, 10C, and 10F anti-sera. Although the highly mobile phosphodiester linkages produce very flexible CPS, shorter segments are conformationally defined, with exposed β -D-galactofuranose ( β DGal f ) side chains that are potential antibody binding sites. We identify four distinct conformational epitopes for the immunodominant β DGal f that assist in rationalizing the complex asymmetric cross-reactivity relationships. In particular, we find that strongly cross-reactive serotypes share common epitopes. Further, we show that human intelectin-1 has the potential to bind the exposed exocyclic 1,2-diol of the terminal β DGal f in each serotype; the relative accessibility of three- or six-linked β DGal f may play a role in the strength of the innate immune response and hence serotype disease prevalence. In conclusion, our modeling study and relevant serological studies support the inclusion of serotype 10A in a vaccine to best protect against serogroup 10 disease.
ISSN:2296-889X
2296-889X
DOI:10.3389/fmolb.2022.961532