Loading…

Changes in the aerosol direct radiative forcing from 2001 to 2015: observational constraints and regional mechanisms

We present estimates of changes in the direct aerosol effects (DRE) and its anthropogenic component (DRF) from 2001 to 2015 using the GFDL chemistry–climate model AM3 driven by CMIP6 historical emissions. AM3 is evaluated against observed changes in the clear-sky shortwave direct aerosol effect (DRE...

Full description

Saved in:
Bibliographic Details
Published in:Atmospheric chemistry and physics 2018-09, Vol.18 (17), p.13265-13281
Main Authors: Paulot, Fabien, Paynter, David, Ginoux, Paul, Naik, Vaishali, Horowitz, Larry W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present estimates of changes in the direct aerosol effects (DRE) and its anthropogenic component (DRF) from 2001 to 2015 using the GFDL chemistry–climate model AM3 driven by CMIP6 historical emissions. AM3 is evaluated against observed changes in the clear-sky shortwave direct aerosol effect (DREswclr) derived from the Clouds and the Earth's Radiant Energy System (CERES) over polluted regions. From 2001 to 2015, observations suggest that DREclrsw increases (i.e., less radiation is scattered to space by aerosols) over western Europe (0.7–1 W m−2 decade−1) and the eastern US (0.9–1.4 W m−2 decade−1), decreases over India (−1 to −1.6 W m−2 decade−1), and does not change significantly over eastern China. AM3 captures these observed regional changes in DREclrsw well in the US and western Europe, where they are dominated by the decline of sulfate aerosols, but not in Asia, where the model overestimates the decrease of DREclrsw. Over India, the model bias can be partly attributed to a decrease of the dust optical depth, which is not captured by our model and offsets some of the increase of anthropogenic aerosols. Over China, we find that the decline of SO2 emissions after 2007 is not represented in the CMIP6 emission inventory. Accounting for this decline, using the Modular Emission Inventory for China, and for the heterogeneous oxidation of SO2 significantly reduces the model bias. For both India and China, our simulations indicate that nitrate and black carbon contribute more to changes in DREclrsw than in the US and Europe. Indeed, our model suggests that black carbon (+0.12 W m−2) dominates the relatively weak change in DRF from 2001 to 2015 (+0.03 W m−2). Over this period, the changes in the forcing from nitrate and sulfate are both small and of the same magnitude (−0.03 W m−2 each). This is in sharp contrast to the forcing from 1850 to 2001 in which forcings by sulfate and black carbon largely cancel each other out, with minor contributions from nitrate. The differences between these time periods can be well understood from changes in emissions alone for black carbon but not for nitrate and sulfate; this reflects non-linear changes in the photochemical production of nitrate and sulfate associated with changes in both the magnitude and spatial distribution of anthropogenic emissions.
ISSN:1680-7324
1680-7316
1680-7324
DOI:10.5194/acp-18-13265-2018