Loading…

Enhancing automatic classification of hepatocellular carcinoma images through image masking, tissue changes and trabecular features

Background: Recent breakthroughs in computer vision and digital microscopy have prompted the application of such technologies in cancer diagnosis, especially in histopathological image analysis. Earlier, an attempt to classify hepatocellular carcinoma images based on nuclear and structural features...

Full description

Saved in:
Bibliographic Details
Published in:Journal of pathology informatics 2015-01, Vol.6 (1), p.26-26, Article 26
Main Authors: Aziz, Maulana Abdul, Kanazawa, Hiroshi, Murakami, Yuri, Kimura, Fumikazu, Yamaguchi, Masahiro, Kiyuna, Tomoharu, Yamashita, Yoshiko, Saito, Akira, Ishikawa, Masahiro, Kobayashi, Naoki, Abe, Tokiya, Hashiguchi, Akinori, Sakamoto, Michiie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: Recent breakthroughs in computer vision and digital microscopy have prompted the application of such technologies in cancer diagnosis, especially in histopathological image analysis. Earlier, an attempt to classify hepatocellular carcinoma images based on nuclear and structural features has been carried out on a set of surgical resected samples. Here, we proposed methods to enhance the process and improve the classification performance. Methods: First, we segmented the histological components of the liver tissues and generated several masked images. By utilizing the masked images, some set of new features were introduced, producing three sets of features consisting nuclei, trabecular and tissue changes features. Furthermore, we extended the classification process by using biopsy resected samples in addition to the surgical samples. Results: Experiments by using support vector machine (SVM) classifier with combinations of features and sample types showed that the proposed methods improve the classification rate in HCC detection for about 1-3%. Moreover, detection rate of low-grades cancer increased when the new features were appended in the classification process, although the rate was worsen in the case of undifferentiated tumors. Conclusions: The masking process increased the reliability of extracted nuclei features. The additional of new features improved the system especially for early HCC detection. Likewise, the combination of surgical and biopsy samples as training data could also improve the classification rates. Therefore, the methods will extend the support for pathologists in the HCC diagnosis.
ISSN:2153-3539
2229-5089
2153-3539
DOI:10.4103/2153-3539.158044