Loading…
Disease resistance gene count increases with rainfall in Silphium integrifolium
Intracellular plant defense against pathogens is mediated by a class of disease resistance genes known as NB‐LRRs or NLRs (R genes). Many of the diseases these genes protect against are more prevalent in regions of higher rainfall, which provide better growth conditions for the pathogens. As such, w...
Saved in:
Published in: | Ecology and evolution 2024-09, Vol.14 (9), p.e11143-n/a |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Intracellular plant defense against pathogens is mediated by a class of disease resistance genes known as NB‐LRRs or NLRs (R genes). Many of the diseases these genes protect against are more prevalent in regions of higher rainfall, which provide better growth conditions for the pathogens. As such, we expect a higher selective pressure for the maintenance and proliferation of R genes in plants adapted to wetter conditions. In this study, we enriched libraries for R genes using RenSeq from baits primarily developed from the common sunflower (Helianthus annuus) reference genome. We sequenced the R gene libraries of Silphium integrifolium Michx, a perennial relative of sunflower, from 12 prairie remnants across a rainfall gradient in the Central Plains of the United States, with both Illumina short‐read (n = 99) and PacBio long‐read (n = 10) approaches. We found a positive relationship between the mean effective annual precipitation of a plant's source prairie remnant and the number of R genes in its genome, consistent with intensity of plant pathogen coevolution increasing with precipitation. We show that RenSeq can be applied to the study of ecological hypotheses in non‐model relatives of model organisms.
We sequenced the disease resistance genes of a broadly distributed flowering plant, Silphium integrifolium, across a rainfall gradient in the Central United States. We found that disease resistance gene count increased with increasing rainfall along the gradient, suggesting an evolutionary pressure for robust immune systems in regions with high biotic stress. Our findings may find applications in breeding programs seeking to develop disease‐resistant crops. |
---|---|
ISSN: | 2045-7758 2045-7758 |
DOI: | 10.1002/ece3.11143 |