Loading…

Recurrent Neural Network-Based Model Predictive Control for Multiple Unmanned Quadrotor Formation Flight

This paper presents a dynamical recurrent neural network- (RNN-) based model predictive control (MPC) structure for the formation flight of multiple unmanned quadrotors. A distributed hierarchical control system with the translation subsystem and rotational subsystem is proposed to handle the format...

Full description

Saved in:
Bibliographic Details
Published in:International journal of aerospace engineering 2019-01, Vol.2019 (2019), p.1-18
Main Authors: Deng, Xiongfeng, Liu, Shuguang, Sun, Xiuxia, Zhang, Boyang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c527t-2a292408e4bf4a17412cc3854e135783c91ef8cad3a0bc0d995a1c9dab8905e23
cites cdi_FETCH-LOGICAL-c527t-2a292408e4bf4a17412cc3854e135783c91ef8cad3a0bc0d995a1c9dab8905e23
container_end_page 18
container_issue 2019
container_start_page 1
container_title International journal of aerospace engineering
container_volume 2019
creator Deng, Xiongfeng
Liu, Shuguang
Sun, Xiuxia
Zhang, Boyang
description This paper presents a dynamical recurrent neural network- (RNN-) based model predictive control (MPC) structure for the formation flight of multiple unmanned quadrotors. A distributed hierarchical control system with the translation subsystem and rotational subsystem is proposed to handle the formation-tracking problem for each quadrotor. The RNN-based MPC is proposed for each subsystem, where the RNN is introduced as the predictive model in MPC. And to improve the modeling accuracy, an adaptive updating law is developed to tune weights online for the RNN. Besides, the adaptive differential evolution (DE) algorithm is utilized to solve the optimization problem for MPC. Furthermore, the closed-loop stability is analyzed; meanwhile, the convergence of the DE algorithm is discussed as well. Finally, some simulation examples are provided to illustrate the validity of the proposed control structure.
doi_str_mv 10.1155/2019/7272387
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_91da2fc175c44e75bc4fd888fb034dcf</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_91da2fc175c44e75bc4fd888fb034dcf</doaj_id><sourcerecordid>2245438765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-2a292408e4bf4a17412cc3854e135783c91ef8cad3a0bc0d995a1c9dab8905e23</originalsourceid><addsrcrecordid>eNqF0c1vFCEYBvCJsYn98ObZTOKxTgsMDHDUjatNWq3Gnsk78NJlnR1WhrHxvy91mvbo6SXwywPhqao3lJxRKsQ5I1SfSyZZq-SL6pB2SjZCS_7yad11r6qjadoS0hEhxWG1-YF2TgnHXH_FOcFQRr6L6VfzESZ09VV0ONTXCV2wOfzBehXHnOJQ-5jqq3nIYT9gfTPuYBwL_z6DSzGXs3VMO8ghjvV6CLebfFIdeBgmfP04j6ub9aefqy_N5bfPF6sPl40VTOaGAdOME4W89xyo5JRZ2yrBkbZCqtZqil5ZcC2Q3hKntQBqtYNeaSKQtcfVxZLrImzNPoUdpL8mQjD_NmK6NZBysAMaTR0wb6kUlnOUorfcO6WU70nLnfUl692StU_x94xTNts4p7E83zDGBS_f3Imi3i_KpjhNCf3TrZSYh17MQy_msZfCTxe-CaODu_A__XbRWAx6eNZUdEqz9h5thJeU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2245438765</pqid></control><display><type>article</type><title>Recurrent Neural Network-Based Model Predictive Control for Multiple Unmanned Quadrotor Formation Flight</title><source>Wiley Online Library</source><source>ProQuest - Publicly Available Content Database</source><creator>Deng, Xiongfeng ; Liu, Shuguang ; Sun, Xiuxia ; Zhang, Boyang</creator><contributor>Castaldi, Paolo ; Paolo Castaldi</contributor><creatorcontrib>Deng, Xiongfeng ; Liu, Shuguang ; Sun, Xiuxia ; Zhang, Boyang ; Castaldi, Paolo ; Paolo Castaldi</creatorcontrib><description>This paper presents a dynamical recurrent neural network- (RNN-) based model predictive control (MPC) structure for the formation flight of multiple unmanned quadrotors. A distributed hierarchical control system with the translation subsystem and rotational subsystem is proposed to handle the formation-tracking problem for each quadrotor. The RNN-based MPC is proposed for each subsystem, where the RNN is introduced as the predictive model in MPC. And to improve the modeling accuracy, an adaptive updating law is developed to tune weights online for the RNN. Besides, the adaptive differential evolution (DE) algorithm is utilized to solve the optimization problem for MPC. Furthermore, the closed-loop stability is analyzed; meanwhile, the convergence of the DE algorithm is discussed as well. Finally, some simulation examples are provided to illustrate the validity of the proposed control structure.</description><identifier>ISSN: 1687-5966</identifier><identifier>EISSN: 1687-5974</identifier><identifier>DOI: 10.1155/2019/7272387</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Adaptive algorithms ; Aerospace engineering ; Computer simulation ; Evolutionary algorithms ; Evolutionary computation ; Model accuracy ; Neural networks ; Optimization ; Predictive control ; Recurrent neural networks ; Rotary wing aircraft ; Stability analysis ; Subsystems ; Tracking problem ; Unmanned helicopters</subject><ispartof>International journal of aerospace engineering, 2019-01, Vol.2019 (2019), p.1-18</ispartof><rights>Copyright © 2019 Boyang Zhang et al.</rights><rights>Copyright © 2019 Boyang Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-2a292408e4bf4a17412cc3854e135783c91ef8cad3a0bc0d995a1c9dab8905e23</citedby><cites>FETCH-LOGICAL-c527t-2a292408e4bf4a17412cc3854e135783c91ef8cad3a0bc0d995a1c9dab8905e23</cites><orcidid>0000-0002-5174-0549 ; 0000-0003-3884-2505 ; 0000-0002-5731-8883</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2245438765/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2245438765?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74872</link.rule.ids></links><search><contributor>Castaldi, Paolo</contributor><contributor>Paolo Castaldi</contributor><creatorcontrib>Deng, Xiongfeng</creatorcontrib><creatorcontrib>Liu, Shuguang</creatorcontrib><creatorcontrib>Sun, Xiuxia</creatorcontrib><creatorcontrib>Zhang, Boyang</creatorcontrib><title>Recurrent Neural Network-Based Model Predictive Control for Multiple Unmanned Quadrotor Formation Flight</title><title>International journal of aerospace engineering</title><description>This paper presents a dynamical recurrent neural network- (RNN-) based model predictive control (MPC) structure for the formation flight of multiple unmanned quadrotors. A distributed hierarchical control system with the translation subsystem and rotational subsystem is proposed to handle the formation-tracking problem for each quadrotor. The RNN-based MPC is proposed for each subsystem, where the RNN is introduced as the predictive model in MPC. And to improve the modeling accuracy, an adaptive updating law is developed to tune weights online for the RNN. Besides, the adaptive differential evolution (DE) algorithm is utilized to solve the optimization problem for MPC. Furthermore, the closed-loop stability is analyzed; meanwhile, the convergence of the DE algorithm is discussed as well. Finally, some simulation examples are provided to illustrate the validity of the proposed control structure.</description><subject>Adaptive algorithms</subject><subject>Aerospace engineering</subject><subject>Computer simulation</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Model accuracy</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Predictive control</subject><subject>Recurrent neural networks</subject><subject>Rotary wing aircraft</subject><subject>Stability analysis</subject><subject>Subsystems</subject><subject>Tracking problem</subject><subject>Unmanned helicopters</subject><issn>1687-5966</issn><issn>1687-5974</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqF0c1vFCEYBvCJsYn98ObZTOKxTgsMDHDUjatNWq3Gnsk78NJlnR1WhrHxvy91mvbo6SXwywPhqao3lJxRKsQ5I1SfSyZZq-SL6pB2SjZCS_7yad11r6qjadoS0hEhxWG1-YF2TgnHXH_FOcFQRr6L6VfzESZ09VV0ONTXCV2wOfzBehXHnOJQ-5jqq3nIYT9gfTPuYBwL_z6DSzGXs3VMO8ghjvV6CLebfFIdeBgmfP04j6ub9aefqy_N5bfPF6sPl40VTOaGAdOME4W89xyo5JRZ2yrBkbZCqtZqil5ZcC2Q3hKntQBqtYNeaSKQtcfVxZLrImzNPoUdpL8mQjD_NmK6NZBysAMaTR0wb6kUlnOUorfcO6WU70nLnfUl692StU_x94xTNts4p7E83zDGBS_f3Imi3i_KpjhNCf3TrZSYh17MQy_msZfCTxe-CaODu_A__XbRWAx6eNZUdEqz9h5thJeU</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Deng, Xiongfeng</creator><creator>Liu, Shuguang</creator><creator>Sun, Xiuxia</creator><creator>Zhang, Boyang</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5174-0549</orcidid><orcidid>https://orcid.org/0000-0003-3884-2505</orcidid><orcidid>https://orcid.org/0000-0002-5731-8883</orcidid></search><sort><creationdate>20190101</creationdate><title>Recurrent Neural Network-Based Model Predictive Control for Multiple Unmanned Quadrotor Formation Flight</title><author>Deng, Xiongfeng ; Liu, Shuguang ; Sun, Xiuxia ; Zhang, Boyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-2a292408e4bf4a17412cc3854e135783c91ef8cad3a0bc0d995a1c9dab8905e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive algorithms</topic><topic>Aerospace engineering</topic><topic>Computer simulation</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Model accuracy</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Predictive control</topic><topic>Recurrent neural networks</topic><topic>Rotary wing aircraft</topic><topic>Stability analysis</topic><topic>Subsystems</topic><topic>Tracking problem</topic><topic>Unmanned helicopters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Xiongfeng</creatorcontrib><creatorcontrib>Liu, Shuguang</creatorcontrib><creatorcontrib>Sun, Xiuxia</creatorcontrib><creatorcontrib>Zhang, Boyang</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Directory of Open Access Journals</collection><jtitle>International journal of aerospace engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Xiongfeng</au><au>Liu, Shuguang</au><au>Sun, Xiuxia</au><au>Zhang, Boyang</au><au>Castaldi, Paolo</au><au>Paolo Castaldi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recurrent Neural Network-Based Model Predictive Control for Multiple Unmanned Quadrotor Formation Flight</atitle><jtitle>International journal of aerospace engineering</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>2019</volume><issue>2019</issue><spage>1</spage><epage>18</epage><pages>1-18</pages><issn>1687-5966</issn><eissn>1687-5974</eissn><abstract>This paper presents a dynamical recurrent neural network- (RNN-) based model predictive control (MPC) structure for the formation flight of multiple unmanned quadrotors. A distributed hierarchical control system with the translation subsystem and rotational subsystem is proposed to handle the formation-tracking problem for each quadrotor. The RNN-based MPC is proposed for each subsystem, where the RNN is introduced as the predictive model in MPC. And to improve the modeling accuracy, an adaptive updating law is developed to tune weights online for the RNN. Besides, the adaptive differential evolution (DE) algorithm is utilized to solve the optimization problem for MPC. Furthermore, the closed-loop stability is analyzed; meanwhile, the convergence of the DE algorithm is discussed as well. Finally, some simulation examples are provided to illustrate the validity of the proposed control structure.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2019/7272387</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-5174-0549</orcidid><orcidid>https://orcid.org/0000-0003-3884-2505</orcidid><orcidid>https://orcid.org/0000-0002-5731-8883</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-5966
ispartof International journal of aerospace engineering, 2019-01, Vol.2019 (2019), p.1-18
issn 1687-5966
1687-5974
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_91da2fc175c44e75bc4fd888fb034dcf
source Wiley Online Library; ProQuest - Publicly Available Content Database
subjects Adaptive algorithms
Aerospace engineering
Computer simulation
Evolutionary algorithms
Evolutionary computation
Model accuracy
Neural networks
Optimization
Predictive control
Recurrent neural networks
Rotary wing aircraft
Stability analysis
Subsystems
Tracking problem
Unmanned helicopters
title Recurrent Neural Network-Based Model Predictive Control for Multiple Unmanned Quadrotor Formation Flight
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A32%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recurrent%20Neural%20Network-Based%20Model%20Predictive%20Control%20for%20Multiple%20Unmanned%20Quadrotor%20Formation%20Flight&rft.jtitle=International%20journal%20of%20aerospace%20engineering&rft.au=Deng,%20Xiongfeng&rft.date=2019-01-01&rft.volume=2019&rft.issue=2019&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.issn=1687-5966&rft.eissn=1687-5974&rft_id=info:doi/10.1155/2019/7272387&rft_dat=%3Cproquest_doaj_%3E2245438765%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c527t-2a292408e4bf4a17412cc3854e135783c91ef8cad3a0bc0d995a1c9dab8905e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2245438765&rft_id=info:pmid/&rfr_iscdi=true