Loading…
Recurrent Neural Network-Based Model Predictive Control for Multiple Unmanned Quadrotor Formation Flight
This paper presents a dynamical recurrent neural network- (RNN-) based model predictive control (MPC) structure for the formation flight of multiple unmanned quadrotors. A distributed hierarchical control system with the translation subsystem and rotational subsystem is proposed to handle the format...
Saved in:
Published in: | International journal of aerospace engineering 2019-01, Vol.2019 (2019), p.1-18 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c527t-2a292408e4bf4a17412cc3854e135783c91ef8cad3a0bc0d995a1c9dab8905e23 |
---|---|
cites | cdi_FETCH-LOGICAL-c527t-2a292408e4bf4a17412cc3854e135783c91ef8cad3a0bc0d995a1c9dab8905e23 |
container_end_page | 18 |
container_issue | 2019 |
container_start_page | 1 |
container_title | International journal of aerospace engineering |
container_volume | 2019 |
creator | Deng, Xiongfeng Liu, Shuguang Sun, Xiuxia Zhang, Boyang |
description | This paper presents a dynamical recurrent neural network- (RNN-) based model predictive control (MPC) structure for the formation flight of multiple unmanned quadrotors. A distributed hierarchical control system with the translation subsystem and rotational subsystem is proposed to handle the formation-tracking problem for each quadrotor. The RNN-based MPC is proposed for each subsystem, where the RNN is introduced as the predictive model in MPC. And to improve the modeling accuracy, an adaptive updating law is developed to tune weights online for the RNN. Besides, the adaptive differential evolution (DE) algorithm is utilized to solve the optimization problem for MPC. Furthermore, the closed-loop stability is analyzed; meanwhile, the convergence of the DE algorithm is discussed as well. Finally, some simulation examples are provided to illustrate the validity of the proposed control structure. |
doi_str_mv | 10.1155/2019/7272387 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_91da2fc175c44e75bc4fd888fb034dcf</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_91da2fc175c44e75bc4fd888fb034dcf</doaj_id><sourcerecordid>2245438765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-2a292408e4bf4a17412cc3854e135783c91ef8cad3a0bc0d995a1c9dab8905e23</originalsourceid><addsrcrecordid>eNqF0c1vFCEYBvCJsYn98ObZTOKxTgsMDHDUjatNWq3Gnsk78NJlnR1WhrHxvy91mvbo6SXwywPhqao3lJxRKsQ5I1SfSyZZq-SL6pB2SjZCS_7yad11r6qjadoS0hEhxWG1-YF2TgnHXH_FOcFQRr6L6VfzESZ09VV0ONTXCV2wOfzBehXHnOJQ-5jqq3nIYT9gfTPuYBwL_z6DSzGXs3VMO8ghjvV6CLebfFIdeBgmfP04j6ub9aefqy_N5bfPF6sPl40VTOaGAdOME4W89xyo5JRZ2yrBkbZCqtZqil5ZcC2Q3hKntQBqtYNeaSKQtcfVxZLrImzNPoUdpL8mQjD_NmK6NZBysAMaTR0wb6kUlnOUorfcO6WU70nLnfUl692StU_x94xTNts4p7E83zDGBS_f3Imi3i_KpjhNCf3TrZSYh17MQy_msZfCTxe-CaODu_A__XbRWAx6eNZUdEqz9h5thJeU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2245438765</pqid></control><display><type>article</type><title>Recurrent Neural Network-Based Model Predictive Control for Multiple Unmanned Quadrotor Formation Flight</title><source>Wiley Online Library</source><source>ProQuest - Publicly Available Content Database</source><creator>Deng, Xiongfeng ; Liu, Shuguang ; Sun, Xiuxia ; Zhang, Boyang</creator><contributor>Castaldi, Paolo ; Paolo Castaldi</contributor><creatorcontrib>Deng, Xiongfeng ; Liu, Shuguang ; Sun, Xiuxia ; Zhang, Boyang ; Castaldi, Paolo ; Paolo Castaldi</creatorcontrib><description>This paper presents a dynamical recurrent neural network- (RNN-) based model predictive control (MPC) structure for the formation flight of multiple unmanned quadrotors. A distributed hierarchical control system with the translation subsystem and rotational subsystem is proposed to handle the formation-tracking problem for each quadrotor. The RNN-based MPC is proposed for each subsystem, where the RNN is introduced as the predictive model in MPC. And to improve the modeling accuracy, an adaptive updating law is developed to tune weights online for the RNN. Besides, the adaptive differential evolution (DE) algorithm is utilized to solve the optimization problem for MPC. Furthermore, the closed-loop stability is analyzed; meanwhile, the convergence of the DE algorithm is discussed as well. Finally, some simulation examples are provided to illustrate the validity of the proposed control structure.</description><identifier>ISSN: 1687-5966</identifier><identifier>EISSN: 1687-5974</identifier><identifier>DOI: 10.1155/2019/7272387</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Adaptive algorithms ; Aerospace engineering ; Computer simulation ; Evolutionary algorithms ; Evolutionary computation ; Model accuracy ; Neural networks ; Optimization ; Predictive control ; Recurrent neural networks ; Rotary wing aircraft ; Stability analysis ; Subsystems ; Tracking problem ; Unmanned helicopters</subject><ispartof>International journal of aerospace engineering, 2019-01, Vol.2019 (2019), p.1-18</ispartof><rights>Copyright © 2019 Boyang Zhang et al.</rights><rights>Copyright © 2019 Boyang Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-2a292408e4bf4a17412cc3854e135783c91ef8cad3a0bc0d995a1c9dab8905e23</citedby><cites>FETCH-LOGICAL-c527t-2a292408e4bf4a17412cc3854e135783c91ef8cad3a0bc0d995a1c9dab8905e23</cites><orcidid>0000-0002-5174-0549 ; 0000-0003-3884-2505 ; 0000-0002-5731-8883</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2245438765/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2245438765?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74872</link.rule.ids></links><search><contributor>Castaldi, Paolo</contributor><contributor>Paolo Castaldi</contributor><creatorcontrib>Deng, Xiongfeng</creatorcontrib><creatorcontrib>Liu, Shuguang</creatorcontrib><creatorcontrib>Sun, Xiuxia</creatorcontrib><creatorcontrib>Zhang, Boyang</creatorcontrib><title>Recurrent Neural Network-Based Model Predictive Control for Multiple Unmanned Quadrotor Formation Flight</title><title>International journal of aerospace engineering</title><description>This paper presents a dynamical recurrent neural network- (RNN-) based model predictive control (MPC) structure for the formation flight of multiple unmanned quadrotors. A distributed hierarchical control system with the translation subsystem and rotational subsystem is proposed to handle the formation-tracking problem for each quadrotor. The RNN-based MPC is proposed for each subsystem, where the RNN is introduced as the predictive model in MPC. And to improve the modeling accuracy, an adaptive updating law is developed to tune weights online for the RNN. Besides, the adaptive differential evolution (DE) algorithm is utilized to solve the optimization problem for MPC. Furthermore, the closed-loop stability is analyzed; meanwhile, the convergence of the DE algorithm is discussed as well. Finally, some simulation examples are provided to illustrate the validity of the proposed control structure.</description><subject>Adaptive algorithms</subject><subject>Aerospace engineering</subject><subject>Computer simulation</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Model accuracy</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Predictive control</subject><subject>Recurrent neural networks</subject><subject>Rotary wing aircraft</subject><subject>Stability analysis</subject><subject>Subsystems</subject><subject>Tracking problem</subject><subject>Unmanned helicopters</subject><issn>1687-5966</issn><issn>1687-5974</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqF0c1vFCEYBvCJsYn98ObZTOKxTgsMDHDUjatNWq3Gnsk78NJlnR1WhrHxvy91mvbo6SXwywPhqao3lJxRKsQ5I1SfSyZZq-SL6pB2SjZCS_7yad11r6qjadoS0hEhxWG1-YF2TgnHXH_FOcFQRr6L6VfzESZ09VV0ONTXCV2wOfzBehXHnOJQ-5jqq3nIYT9gfTPuYBwL_z6DSzGXs3VMO8ghjvV6CLebfFIdeBgmfP04j6ub9aefqy_N5bfPF6sPl40VTOaGAdOME4W89xyo5JRZ2yrBkbZCqtZqil5ZcC2Q3hKntQBqtYNeaSKQtcfVxZLrImzNPoUdpL8mQjD_NmK6NZBysAMaTR0wb6kUlnOUorfcO6WU70nLnfUl692StU_x94xTNts4p7E83zDGBS_f3Imi3i_KpjhNCf3TrZSYh17MQy_msZfCTxe-CaODu_A__XbRWAx6eNZUdEqz9h5thJeU</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Deng, Xiongfeng</creator><creator>Liu, Shuguang</creator><creator>Sun, Xiuxia</creator><creator>Zhang, Boyang</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5174-0549</orcidid><orcidid>https://orcid.org/0000-0003-3884-2505</orcidid><orcidid>https://orcid.org/0000-0002-5731-8883</orcidid></search><sort><creationdate>20190101</creationdate><title>Recurrent Neural Network-Based Model Predictive Control for Multiple Unmanned Quadrotor Formation Flight</title><author>Deng, Xiongfeng ; Liu, Shuguang ; Sun, Xiuxia ; Zhang, Boyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-2a292408e4bf4a17412cc3854e135783c91ef8cad3a0bc0d995a1c9dab8905e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive algorithms</topic><topic>Aerospace engineering</topic><topic>Computer simulation</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Model accuracy</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Predictive control</topic><topic>Recurrent neural networks</topic><topic>Rotary wing aircraft</topic><topic>Stability analysis</topic><topic>Subsystems</topic><topic>Tracking problem</topic><topic>Unmanned helicopters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Xiongfeng</creatorcontrib><creatorcontrib>Liu, Shuguang</creatorcontrib><creatorcontrib>Sun, Xiuxia</creatorcontrib><creatorcontrib>Zhang, Boyang</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Directory of Open Access Journals</collection><jtitle>International journal of aerospace engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Xiongfeng</au><au>Liu, Shuguang</au><au>Sun, Xiuxia</au><au>Zhang, Boyang</au><au>Castaldi, Paolo</au><au>Paolo Castaldi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recurrent Neural Network-Based Model Predictive Control for Multiple Unmanned Quadrotor Formation Flight</atitle><jtitle>International journal of aerospace engineering</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>2019</volume><issue>2019</issue><spage>1</spage><epage>18</epage><pages>1-18</pages><issn>1687-5966</issn><eissn>1687-5974</eissn><abstract>This paper presents a dynamical recurrent neural network- (RNN-) based model predictive control (MPC) structure for the formation flight of multiple unmanned quadrotors. A distributed hierarchical control system with the translation subsystem and rotational subsystem is proposed to handle the formation-tracking problem for each quadrotor. The RNN-based MPC is proposed for each subsystem, where the RNN is introduced as the predictive model in MPC. And to improve the modeling accuracy, an adaptive updating law is developed to tune weights online for the RNN. Besides, the adaptive differential evolution (DE) algorithm is utilized to solve the optimization problem for MPC. Furthermore, the closed-loop stability is analyzed; meanwhile, the convergence of the DE algorithm is discussed as well. Finally, some simulation examples are provided to illustrate the validity of the proposed control structure.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2019/7272387</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-5174-0549</orcidid><orcidid>https://orcid.org/0000-0003-3884-2505</orcidid><orcidid>https://orcid.org/0000-0002-5731-8883</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-5966 |
ispartof | International journal of aerospace engineering, 2019-01, Vol.2019 (2019), p.1-18 |
issn | 1687-5966 1687-5974 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_91da2fc175c44e75bc4fd888fb034dcf |
source | Wiley Online Library; ProQuest - Publicly Available Content Database |
subjects | Adaptive algorithms Aerospace engineering Computer simulation Evolutionary algorithms Evolutionary computation Model accuracy Neural networks Optimization Predictive control Recurrent neural networks Rotary wing aircraft Stability analysis Subsystems Tracking problem Unmanned helicopters |
title | Recurrent Neural Network-Based Model Predictive Control for Multiple Unmanned Quadrotor Formation Flight |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A32%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recurrent%20Neural%20Network-Based%20Model%20Predictive%20Control%20for%20Multiple%20Unmanned%20Quadrotor%20Formation%20Flight&rft.jtitle=International%20journal%20of%20aerospace%20engineering&rft.au=Deng,%20Xiongfeng&rft.date=2019-01-01&rft.volume=2019&rft.issue=2019&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.issn=1687-5966&rft.eissn=1687-5974&rft_id=info:doi/10.1155/2019/7272387&rft_dat=%3Cproquest_doaj_%3E2245438765%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c527t-2a292408e4bf4a17412cc3854e135783c91ef8cad3a0bc0d995a1c9dab8905e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2245438765&rft_id=info:pmid/&rfr_iscdi=true |