Loading…
Distribution Bisimilarity via the Power of Convex Algebras
Probabilistic automata (PA), also known as probabilistic nondeterministic labelled transition systems, combine probability and nondeterminism. They can be given different semantics, like strong bisimilarity, convex bisimilarity, or (more recently) distribution bisimilarity. The latter is based on th...
Saved in:
Published in: | Logical methods in computer science 2021-01, Vol.17, Issue 3 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Probabilistic automata (PA), also known as probabilistic nondeterministic
labelled transition systems, combine probability and nondeterminism. They can
be given different semantics, like strong bisimilarity, convex bisimilarity, or
(more recently) distribution bisimilarity. The latter is based on the view of
PA as transformers of probability distributions, also called belief states, and
promotes distributions to first-class citizens.
We give a coalgebraic account of distribution bisimilarity, and explain the
genesis of the belief-state transformer from a PA. To do so, we make explicit
the convex algebraic structure present in PA and identify belief-state
transformers as transition systems with state space that carries a convex
algebra. As a consequence of our abstract approach, we can give a sound proof
technique which we call bisimulation up-to convex hull. |
---|---|
ISSN: | 1860-5974 1860-5974 |
DOI: | 10.46298/lmcs-17(3:10)2021 |