Loading…
A New Numerical Approach for Solving 1D Fractional Diffusion-Wave Equation
Fractional derivative is nonlocal, which is more suitable to simulate physical phenomena and provides more accurate models of physical systems such as earthquake vibration and polymers. The present study suggested a new numerical approach for the fractional diffusion-wave equation (FDWE). The fracti...
Saved in:
Published in: | Journal of function spaces 2021, Vol.2021, p.1-7 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fractional derivative is nonlocal, which is more suitable to simulate physical phenomena and provides more accurate models of physical systems such as earthquake vibration and polymers. The present study suggested a new numerical approach for the fractional diffusion-wave equation (FDWE). The fractional-order derivative is in the Riemann-Liouville (R-L) sense. Discussed the theoretical analysis of stability, consistency, and convergence. The numerical examples demonstrate that the method is more workable and excellently holds the theoretical analysis, showing the scheme’s feasibility. |
---|---|
ISSN: | 2314-8896 2314-8888 |
DOI: | 10.1155/2021/6638597 |