Loading…

Self-powered ultraflexible photonic skin for continuous bio-signal detection via air-operation-stable polymer light-emitting diodes

Ultraflexible optical devices have been used extensively in next-generation wearable electronics owing to their excellent conformability to human skins. Long-term health monitoring also requires the integration of ultraflexible optical devices with an energy-harvesting power source; to make devices...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2021-04, Vol.12 (1), p.2234-2234, Article 2234
Main Authors: Jinno, Hiroaki, Yokota, Tomoyuki, Koizumi, Mari, Yukita, Wakako, Saito, Masahiko, Osaka, Itaru, Fukuda, Kenjiro, Someya, Takao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ultraflexible optical devices have been used extensively in next-generation wearable electronics owing to their excellent conformability to human skins. Long-term health monitoring also requires the integration of ultraflexible optical devices with an energy-harvesting power source; to make devices self-powered. However, system-level integration of ultraflexible optical sensors with power sources is challenging because of insufficient air operational stability of ultraflexible polymer light-emitting diodes. Here we develop an ultraflexible self-powered organic optical system for photoplethysmogram monitoring by combining air-operation-stable polymer light-emitting diodes, organic solar cells, and organic photodetectors. Adopting an inverted structure and a doped polyethylenimine ethoxylated layer, ultraflexible polymer light-emitting diodes retain 70% of the initial luminance even after 11.3 h of operation under air. Also, integrated optical sensors exhibit a high linearity with the light intensity exponent of 0.98 by polymer light-emitting diode. Such self-powered, ultraflexible photoplethysmogram sensors perform monitoring of blood pulse signals as 77 beats per minute. Flexible electronic devices remain an attractive technology for optical sensor applications that require long-term health monitoring and conformability on human skin. Here, the authors report an ultrathin self-powered integrated organic optical system for plethysmogram monitoring.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-22558-6