Loading…
Some Results on Ricci Almost Solitons
We find three necessary and sufficient conditions for an n-dimensional compact Ricci almost soliton (M,g,w,σ) to be a trivial Ricci soliton under the assumption that the soliton vector field w is a geodesic vector field (a vector field with integral curves geodesics). The first result uses condition...
Saved in:
Published in: | Symmetry (Basel) 2021-03, Vol.13 (3), p.430 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We find three necessary and sufficient conditions for an n-dimensional compact Ricci almost soliton (M,g,w,σ) to be a trivial Ricci soliton under the assumption that the soliton vector field w is a geodesic vector field (a vector field with integral curves geodesics). The first result uses condition r2≤nσr on a nonzero scalar curvature r; the second result uses the condition that the soliton vector field w is an eigen vector of the Ricci operator with constant eigenvalue λ satisfying n2λ2≥r2; the third result uses a suitable lower bound on the Ricci curvature S(w,w). Finally, we show that an n-dimensional connected Ricci almost soliton (M,g,w,σ) with soliton vector field w is a geodesic vector field with a trivial Ricci soliton, if and only if, nσ−r is a constant along integral curves of w and the Ricci curvature S(w,w) has a suitable lower bound. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym13030430 |