Loading…
A Temporal Directed Graph Convolution Network for Traffic Forecasting Using Taxi Trajectory Data
Traffic forecasting plays a vital role in intelligent transportation systems and is of great significance for traffic management. The main issue of traffic forecasting is how to model spatial and temporal dependence. Current state-of-the-art methods tend to apply deep learning models; these methods...
Saved in:
Published in: | ISPRS international journal of geo-information 2021-09, Vol.10 (9), p.624 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Traffic forecasting plays a vital role in intelligent transportation systems and is of great significance for traffic management. The main issue of traffic forecasting is how to model spatial and temporal dependence. Current state-of-the-art methods tend to apply deep learning models; these methods are unexplainable and ignore the a priori characteristics of traffic flow. To address these issues, a temporal directed graph convolution network (T-DGCN) is proposed. A directed graph is first constructed to model the movement characteristics of vehicles, and based on this, a directed graph convolution operator is used to capture spatial dependence. For temporal dependence, we couple a keyframe sequence and transformer to learn the tendencies and periodicities of traffic flow. Using a real-world dataset, we confirm the superior performance of the T-DGCN through comparative experiments. Moreover, a detailed discussion is presented to provide the path of reasoning from the data to the model design to the conclusions. |
---|---|
ISSN: | 2220-9964 2220-9964 |
DOI: | 10.3390/ijgi10090624 |