Loading…
A Temporal Directed Graph Convolution Network for Traffic Forecasting Using Taxi Trajectory Data
Traffic forecasting plays a vital role in intelligent transportation systems and is of great significance for traffic management. The main issue of traffic forecasting is how to model spatial and temporal dependence. Current state-of-the-art methods tend to apply deep learning models; these methods...
Saved in:
Published in: | ISPRS international journal of geo-information 2021-09, Vol.10 (9), p.624 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c367t-7c27fb47e1bb6276571c2b634dd05c9c96001e5d9e06c6b942709147fce2b7033 |
---|---|
cites | cdi_FETCH-LOGICAL-c367t-7c27fb47e1bb6276571c2b634dd05c9c96001e5d9e06c6b942709147fce2b7033 |
container_end_page | |
container_issue | 9 |
container_start_page | 624 |
container_title | ISPRS international journal of geo-information |
container_volume | 10 |
creator | Chen, Kaiqi Deng, Min Shi, Yan |
description | Traffic forecasting plays a vital role in intelligent transportation systems and is of great significance for traffic management. The main issue of traffic forecasting is how to model spatial and temporal dependence. Current state-of-the-art methods tend to apply deep learning models; these methods are unexplainable and ignore the a priori characteristics of traffic flow. To address these issues, a temporal directed graph convolution network (T-DGCN) is proposed. A directed graph is first constructed to model the movement characteristics of vehicles, and based on this, a directed graph convolution operator is used to capture spatial dependence. For temporal dependence, we couple a keyframe sequence and transformer to learn the tendencies and periodicities of traffic flow. Using a real-world dataset, we confirm the superior performance of the T-DGCN through comparative experiments. Moreover, a detailed discussion is presented to provide the path of reasoning from the data to the model design to the conclusions. |
doi_str_mv | 10.3390/ijgi10090624 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_942db4e7ebdd4598bb485c4e7eea1cf2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_942db4e7ebdd4598bb485c4e7eea1cf2</doaj_id><sourcerecordid>2576386824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-7c27fb47e1bb6276571c2b634dd05c9c96001e5d9e06c6b942709147fce2b7033</originalsourceid><addsrcrecordid>eNpNUcFOwzAMrRBITIMbHxCJK4U0SZPmOG1sTJrg0p1DkqYjpWtGmgH7e1KG0HywrefnZ1tOkpsM3mPM4YNtNjaDkEOKyFkyQgjBlHNKzk_yy-S67xsYjWe4IHCUvE5AabY752ULZtYbHUwFFl7u3sDUdZ-u3QfrOvBswpfz76B2HpRe1rXVYO4iXfbBdhuw7gdfym87lJso4_wBzGSQV8lFLdveXP_FcbKeP5bTp3T1slhOJ6tUY8pCyjRitSLMZEpRxGjOMo0UxaSqYK655hTCzOQVN5BqqjhBLN5AWK0NUgxiPE6WR93KyUbsvN1KfxBOWvELOL8R0gerWyNic6WIYUZVFcl5oRQpcj0ARma6RlHr9qi18-5jb_ogGrf3XVxfoJxRXNACkci6O7K0d33vTf0_NYNieIk4fQn-AbiLfm8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576386824</pqid></control><display><type>article</type><title>A Temporal Directed Graph Convolution Network for Traffic Forecasting Using Taxi Trajectory Data</title><source>ProQuest - Publicly Available Content Database</source><creator>Chen, Kaiqi ; Deng, Min ; Shi, Yan</creator><creatorcontrib>Chen, Kaiqi ; Deng, Min ; Shi, Yan</creatorcontrib><description>Traffic forecasting plays a vital role in intelligent transportation systems and is of great significance for traffic management. The main issue of traffic forecasting is how to model spatial and temporal dependence. Current state-of-the-art methods tend to apply deep learning models; these methods are unexplainable and ignore the a priori characteristics of traffic flow. To address these issues, a temporal directed graph convolution network (T-DGCN) is proposed. A directed graph is first constructed to model the movement characteristics of vehicles, and based on this, a directed graph convolution operator is used to capture spatial dependence. For temporal dependence, we couple a keyframe sequence and transformer to learn the tendencies and periodicities of traffic flow. Using a real-world dataset, we confirm the superior performance of the T-DGCN through comparative experiments. Moreover, a detailed discussion is presented to provide the path of reasoning from the data to the model design to the conclusions.</description><identifier>ISSN: 2220-9964</identifier><identifier>EISSN: 2220-9964</identifier><identifier>DOI: 10.3390/ijgi10090624</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Convolution ; Dependence ; directed graph convolution ; Forecasting ; Graph theory ; Intelligent transportation systems ; Machine learning ; Markov chain ; Mathematical models ; Methods ; Neural networks ; Roads & highways ; spatial dependence ; temporal dependence ; Time series ; Traffic congestion ; Traffic flow ; traffic flow forecasting ; Traffic management ; transformer structure ; Transportation networks ; Transportation planning ; Variables ; Vehicles</subject><ispartof>ISPRS international journal of geo-information, 2021-09, Vol.10 (9), p.624</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-7c27fb47e1bb6276571c2b634dd05c9c96001e5d9e06c6b942709147fce2b7033</citedby><cites>FETCH-LOGICAL-c367t-7c27fb47e1bb6276571c2b634dd05c9c96001e5d9e06c6b942709147fce2b7033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2576386824/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2576386824?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><creatorcontrib>Chen, Kaiqi</creatorcontrib><creatorcontrib>Deng, Min</creatorcontrib><creatorcontrib>Shi, Yan</creatorcontrib><title>A Temporal Directed Graph Convolution Network for Traffic Forecasting Using Taxi Trajectory Data</title><title>ISPRS international journal of geo-information</title><description>Traffic forecasting plays a vital role in intelligent transportation systems and is of great significance for traffic management. The main issue of traffic forecasting is how to model spatial and temporal dependence. Current state-of-the-art methods tend to apply deep learning models; these methods are unexplainable and ignore the a priori characteristics of traffic flow. To address these issues, a temporal directed graph convolution network (T-DGCN) is proposed. A directed graph is first constructed to model the movement characteristics of vehicles, and based on this, a directed graph convolution operator is used to capture spatial dependence. For temporal dependence, we couple a keyframe sequence and transformer to learn the tendencies and periodicities of traffic flow. Using a real-world dataset, we confirm the superior performance of the T-DGCN through comparative experiments. Moreover, a detailed discussion is presented to provide the path of reasoning from the data to the model design to the conclusions.</description><subject>Convolution</subject><subject>Dependence</subject><subject>directed graph convolution</subject><subject>Forecasting</subject><subject>Graph theory</subject><subject>Intelligent transportation systems</subject><subject>Machine learning</subject><subject>Markov chain</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Roads & highways</subject><subject>spatial dependence</subject><subject>temporal dependence</subject><subject>Time series</subject><subject>Traffic congestion</subject><subject>Traffic flow</subject><subject>traffic flow forecasting</subject><subject>Traffic management</subject><subject>transformer structure</subject><subject>Transportation networks</subject><subject>Transportation planning</subject><subject>Variables</subject><subject>Vehicles</subject><issn>2220-9964</issn><issn>2220-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFOwzAMrRBITIMbHxCJK4U0SZPmOG1sTJrg0p1DkqYjpWtGmgH7e1KG0HywrefnZ1tOkpsM3mPM4YNtNjaDkEOKyFkyQgjBlHNKzk_yy-S67xsYjWe4IHCUvE5AabY752ULZtYbHUwFFl7u3sDUdZ-u3QfrOvBswpfz76B2HpRe1rXVYO4iXfbBdhuw7gdfym87lJso4_wBzGSQV8lFLdveXP_FcbKeP5bTp3T1slhOJ6tUY8pCyjRitSLMZEpRxGjOMo0UxaSqYK655hTCzOQVN5BqqjhBLN5AWK0NUgxiPE6WR93KyUbsvN1KfxBOWvELOL8R0gerWyNic6WIYUZVFcl5oRQpcj0ARma6RlHr9qi18-5jb_ogGrf3XVxfoJxRXNACkci6O7K0d33vTf0_NYNieIk4fQn-AbiLfm8</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Chen, Kaiqi</creator><creator>Deng, Min</creator><creator>Shi, Yan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20210901</creationdate><title>A Temporal Directed Graph Convolution Network for Traffic Forecasting Using Taxi Trajectory Data</title><author>Chen, Kaiqi ; Deng, Min ; Shi, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-7c27fb47e1bb6276571c2b634dd05c9c96001e5d9e06c6b942709147fce2b7033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Convolution</topic><topic>Dependence</topic><topic>directed graph convolution</topic><topic>Forecasting</topic><topic>Graph theory</topic><topic>Intelligent transportation systems</topic><topic>Machine learning</topic><topic>Markov chain</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Roads & highways</topic><topic>spatial dependence</topic><topic>temporal dependence</topic><topic>Time series</topic><topic>Traffic congestion</topic><topic>Traffic flow</topic><topic>traffic flow forecasting</topic><topic>Traffic management</topic><topic>transformer structure</topic><topic>Transportation networks</topic><topic>Transportation planning</topic><topic>Variables</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Kaiqi</creatorcontrib><creatorcontrib>Deng, Min</creatorcontrib><creatorcontrib>Shi, Yan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ: Directory of Open Access Journals</collection><jtitle>ISPRS international journal of geo-information</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Kaiqi</au><au>Deng, Min</au><au>Shi, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Temporal Directed Graph Convolution Network for Traffic Forecasting Using Taxi Trajectory Data</atitle><jtitle>ISPRS international journal of geo-information</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>10</volume><issue>9</issue><spage>624</spage><pages>624-</pages><issn>2220-9964</issn><eissn>2220-9964</eissn><abstract>Traffic forecasting plays a vital role in intelligent transportation systems and is of great significance for traffic management. The main issue of traffic forecasting is how to model spatial and temporal dependence. Current state-of-the-art methods tend to apply deep learning models; these methods are unexplainable and ignore the a priori characteristics of traffic flow. To address these issues, a temporal directed graph convolution network (T-DGCN) is proposed. A directed graph is first constructed to model the movement characteristics of vehicles, and based on this, a directed graph convolution operator is used to capture spatial dependence. For temporal dependence, we couple a keyframe sequence and transformer to learn the tendencies and periodicities of traffic flow. Using a real-world dataset, we confirm the superior performance of the T-DGCN through comparative experiments. Moreover, a detailed discussion is presented to provide the path of reasoning from the data to the model design to the conclusions.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/ijgi10090624</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2220-9964 |
ispartof | ISPRS international journal of geo-information, 2021-09, Vol.10 (9), p.624 |
issn | 2220-9964 2220-9964 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_942db4e7ebdd4598bb485c4e7eea1cf2 |
source | ProQuest - Publicly Available Content Database |
subjects | Convolution Dependence directed graph convolution Forecasting Graph theory Intelligent transportation systems Machine learning Markov chain Mathematical models Methods Neural networks Roads & highways spatial dependence temporal dependence Time series Traffic congestion Traffic flow traffic flow forecasting Traffic management transformer structure Transportation networks Transportation planning Variables Vehicles |
title | A Temporal Directed Graph Convolution Network for Traffic Forecasting Using Taxi Trajectory Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A12%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Temporal%20Directed%20Graph%20Convolution%20Network%20for%20Traffic%20Forecasting%20Using%20Taxi%20Trajectory%20Data&rft.jtitle=ISPRS%20international%20journal%20of%20geo-information&rft.au=Chen,%20Kaiqi&rft.date=2021-09-01&rft.volume=10&rft.issue=9&rft.spage=624&rft.pages=624-&rft.issn=2220-9964&rft.eissn=2220-9964&rft_id=info:doi/10.3390/ijgi10090624&rft_dat=%3Cproquest_doaj_%3E2576386824%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-7c27fb47e1bb6276571c2b634dd05c9c96001e5d9e06c6b942709147fce2b7033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2576386824&rft_id=info:pmid/&rfr_iscdi=true |