Loading…

A Method of Ultra-Large-Scale Matrix Inversion Using Block Recursion

Ultra-large-scale matrix inversion has been applied as the fundamental operation of numerous domains, owing to the growth of big data and matrix applications. Using cryptography as an example, the solution of ultra-large-scale linear equations over finite fields is important in many cryptanalysis sc...

Full description

Saved in:
Bibliographic Details
Published in:Information (Basel) 2020-11, Vol.11 (11), p.523
Main Authors: Wang, HouZhen, Guo, Yan, Zhang, HuanGuo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ultra-large-scale matrix inversion has been applied as the fundamental operation of numerous domains, owing to the growth of big data and matrix applications. Using cryptography as an example, the solution of ultra-large-scale linear equations over finite fields is important in many cryptanalysis schemes. However, inverting matrices of extremely high order, such as in millions, is challenging; nonetheless, the need has become increasingly urgent. Hence, we propose a parallel distributed block recursive computing method that can process matrices at a significantly increased scale, based on Strassen’s method; furthermore, we describe the related well-designed algorithm herein. Additionally, the experimental results based on comparison show the efficiency and the superiority of our method. Using our method, up to 140,000 dimensions can be processed in a supercomputing center.
ISSN:2078-2489
2078-2489
DOI:10.3390/info11110523