Loading…

Evaluation of Fiber-Reinforced Modular Soft Actuators for Individualized Soft Rehabilitation Gloves

Applying soft actuators to hand motion assist for rehabilitation has been receiving increasing interest in recent years. Pioneering research efforts have shown the feasibility of soft rehabilitation gloves (SRGs). However, one important and practical issue, the effects of users’ individual differenc...

Full description

Saved in:
Bibliographic Details
Published in:Actuators 2022-03, Vol.11 (3), p.84
Main Authors: Kokubu, Shota, Wang, Yuanyuan, Tortós Vinocour, Pablo E., Lu, Yuxi, Huang, Shaoying, Nishimura, Reiji, Hsueh, Ya-Hsin, Yu, Wenwei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Applying soft actuators to hand motion assist for rehabilitation has been receiving increasing interest in recent years. Pioneering research efforts have shown the feasibility of soft rehabilitation gloves (SRGs). However, one important and practical issue, the effects of users’ individual differences in finger size and joint stiffness on both bending performance (e.g., Range of motion (ROM) and torque) and the mechanical loads applied to finger joints when the actuators are placed on a patient’s hand, has not been well investigated. Moreover, the design considerations of SRGs for individual users, considering individual differences, have not been addressed. These, along with the inherent safety of soft actuators, should be investigated carefully before the practical use of SRGs. This work aimed to clarify the effects of individual differences on the actuator’s performance through a series of experiments using dummy fingers designed with individualized parameters. Two types of fiber-reinforced soft actuators, the modular type for assisting each joint and conventional (whole-finger assist) type, were designed and compared. It was found that the modular soft actuators respond better to individual differences set in the experiment and exhibit a superior performance to the conventional ones. By suitable connectors and air pressure, the modular soft actuators could cope with the individual differences with minimal effort. The effects of the individualized parameters are discussed, and design considerations are extracted and summarized. This study will play an important role in pushing forward the SRGs to real rehabilitation practice.
ISSN:2076-0825
2076-0825
DOI:10.3390/act11030084