Loading…

Preparation of Vanadium Oxides from a Vanadium (IV) Strip Liquor Extracted from Vanadium-Bearing Shale Using an Eco-Friendly Method

In the traditional vanadium precipitation process, the use of ammonium salts can produce serious pollution problems from the ammonia waste-water and the ammonia gas generated during the processing. In this reported study, an eco-friendly technology was investigated to prepare vanadium oxides from a...

Full description

Saved in:
Bibliographic Details
Published in:Metals (Basel ) 2018-12, Vol.8 (12), p.994
Main Authors: Ma, Yiqian, Wang, Xuewen, Stopic, Srecko, Wang, Mingyu, Kremer, Dario, Wotruba, Hermann, Friedrich, Bernd
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the traditional vanadium precipitation process, the use of ammonium salts can produce serious pollution problems from the ammonia waste-water and the ammonia gas generated during the processing. In this reported study, an eco-friendly technology was investigated to prepare vanadium oxides from a typical vanadium (IV) strip liquor, obtained after the hydrometallurgical treatment of a vanadium-bearing shale. Thermodynamic analysis demonstrated that VO(OH)2 could be prepared as a precursor over a suitable solution pH range. Experimental results showed that by adjusting the pH to around 5.6, at room temperature, 98.6% of the vanadium in the strip liquor was formed into hydroxide, in 5 min. After obtaining the VO(OH)2, it was washed with dilute acid to minimize the level of impurities. VO2 and V2O5 were then produced by reacting the VO(OH)2 with air or argon, in a tube furnace. The XRD analyses of the products showed that VO2 had been produced in air and V2O5 had been produced in argon. The purity of the VO2 was 98.82% after calcining for 2 h at 550 °C, in argon flow, at a rate of 50 mL/min. It was found that the purity of the V2O5 was 98.70%, using the same reaction conditions in air. Compared to the traditional precipitation method that uses ammonium salt, followed by calcination, this proposed method is eco-friendly and employs less quantities of reagents and energy, and two types of products can be produced. Consequently, this process could promote the sustainable development of the vanadium chemical industry.
ISSN:2075-4701
2075-4701
DOI:10.3390/met8120994