Loading…

Direct visualization of radiation-induced transformations at alkali halide–air interfaces

Radiation driven reactions at mineral/air interfaces are important to the chemistry of the atmosphere, but experimental constraints (e.g. simultaneous irradiation, in situ observation, and environmental control) leave process understanding incomplete. Using a custom atomic force microscope equipped...

Full description

Saved in:
Bibliographic Details
Published in:Communications chemistry 2021-04, Vol.4 (1), p.49-49, Article 49
Main Authors: Riechers, Shawn L., Petrik, Nikolay G., Loring, John S., Bowden, Mark E., Cliff, John B., Murphy, Mark K., Pearce, Carolyn I., Kimmel, Greg A., Rosso, Kevin M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Radiation driven reactions at mineral/air interfaces are important to the chemistry of the atmosphere, but experimental constraints (e.g. simultaneous irradiation, in situ observation, and environmental control) leave process understanding incomplete. Using a custom atomic force microscope equipped with an integrated X-ray source, transformation of potassium bromide surfaces to potassium nitrate by air radiolysis species was followed directly in situ at the nanoscale. Radiolysis initiates dynamic step edge dissolution, surface composition evolution, and ultimately nucleation and heteroepitaxial growth of potassium nitrate crystallites mediated by surface diffusion at rates controlled by adsorbed water. In contrast to in situ electron microscopy and synchrotron-based imaging techniques where high radiation doses are intrinsic, our approach illustrates the value of decoupling irradiation and the basis of observation. Halide salts exhibit complex radiation-induced reactions that are relevant in atmospheric chemistry, but detailed characterizations in high-level radiation fields are challenging to obtain. Here, the authors use a custom atomic force microscope to study alkali halide surface transformations in situ under 18 kGy/hr irradiation.
ISSN:2399-3669
2399-3669
DOI:10.1038/s42004-021-00486-2