Loading…
Stability Switching Curves and Hopf Bifurcation of a Fractional Predator–Prey System with Two Nonidentical Delays
In this paper, we propose and analyze a three-dimensional fractional predator–prey system with two nonidentical delays. By choosing two delays as the bifurcation parameter, we first calculate the stability switching curves in the delay plane. By judging the direction of the characteristic root acros...
Saved in:
Published in: | Symmetry (Basel) 2022-04, Vol.14 (4), p.643 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we propose and analyze a three-dimensional fractional predator–prey system with two nonidentical delays. By choosing two delays as the bifurcation parameter, we first calculate the stability switching curves in the delay plane. By judging the direction of the characteristic root across the imaginary axis in stability switching curves, we obtain that the stability of the system changes when two delays cross the stability switching curves, and then, the system appears to have bifurcating periodic solutions near the positive equilibrium, which implies that the trajectory of the system is the axial symmetry. Secondly, we obtain the conditions for the existence of Hopf bifurcation. Finally, we give one example to verify the correctness of the theoretical analysis. In particular, the geometric stability switch criteria are applied to the stability analysis of the fractional differential predator–prey system with two delays for the first time. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym14040643 |