Loading…

PotatoPestNet: A CTInceptionV3-RS-based neural network for accurate identification of potato pests

Potatoes are the third-largest food crop globally, but their production frequently encounters difficulties because of aggressive pest infestations. Early classification those potato pests plays an important role in the detection and prevention of their notorious attack. The aim of this study is to i...

Full description

Saved in:
Bibliographic Details
Published in:Smart agricultural technology 2023-10, Vol.5, p.100297, Article 100297
Main Authors: Talukder, Md. Simul Hasan, Bin Sulaiman, Rejwan, Chowdhury, Mohammad Raziuddin, Nipun, Musarrat Saberin, Islam, Taminul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Potatoes are the third-largest food crop globally, but their production frequently encounters difficulties because of aggressive pest infestations. Early classification those potato pests plays an important role in the detection and prevention of their notorious attack. The aim of this study is to investigate the various types and characteristics of these pests and propose an efficient PotatoPestNet AI-based automatic potato pest identification system. To accomplish this, we curated a reliable dataset consisting of eight types of potato pests. We leveraged the power of transfer learning by employing five customized, pre-trained transfer learning models: CMobileNetV2, CNASLargeNet, CXception, CDenseNet201, and CInceptionV3, in proposing a robust PotatoPestNet model to accurately classify potato pests. To improve the models' performance, we applied various augmentation techniques, incorporated a global average pooling layer, and implemented proper regularization methods. To further enhance the performance of the models, we utilized random search (RS) optimization for hyperparameter tuning. This optimization technique played a significant role in fine-tuning the models and achieving improved performance. We evaluated the models both visually and quantitatively, utilizing different evaluation metrics. The robustness of the models in handling imbalanced datasets was assessed using the Receiver Operating Characteristic (ROC) curve. Among the models, the Customized Tuned Inception V3 (CTInceptionV3) model, optimized through random search, demonstrated outstanding performance. It achieved the highest accuracy (91%), precision (91%), recall (91%), and F1-score (91%), showcasing its superior ability to accurately identify and classify potato pests.
ISSN:2772-3755
2772-3755
DOI:10.1016/j.atech.2023.100297