Loading…

Heat Transfer Analysis on the Hiemenz Flow of a Non-Newtonian Fluid: A Homotopy Method Solution

The mathematical model for the incompressible two-dimensional/axisymmetric non-Newtonian fluid flows and heat transfer analysis in the region of stagnation point over a stretching/shrinking sheet and axisymmetric shrinking sheet is presented. The governing equations are transformed into dimensionles...

Full description

Saved in:
Bibliographic Details
Published in:Abstract and Applied Analysis 2013-01, Vol.2013 (2013), p.694-698-368
Main Authors: Khan, Yasir, Šmarda, Zdeněk
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The mathematical model for the incompressible two-dimensional/axisymmetric non-Newtonian fluid flows and heat transfer analysis in the region of stagnation point over a stretching/shrinking sheet and axisymmetric shrinking sheet is presented. The governing equations are transformed into dimensionless nonlinear ordinary differential equations by similarity transformation. Analytical technique, namely, the homotopy perturbation method (HPM) with general form of linear operator is used to solve dimensionless nonlinear ordinary differential equations. The series solution is obtained without using the diagonal Padé approximants to handle the boundary condition at infinity which can be considered as a clear advantage of homotopy perturbation technique over the decomposition method. The effects of the pertinent parameters on the velocity and temperature field are discussed through graphs. To the best of authors’ knowledge, HPM solution with general form of linear operator for two-dimensional/axisymmetric non-Newtonian fluid flows and heat transfer analysis in the region of stagnation point is presented for the first time in the literature.
ISSN:1085-3375
1687-0409
DOI:10.1155/2013/342690