Loading…

Heat Transfer Analysis on the Hiemenz Flow of a Non-Newtonian Fluid: A Homotopy Method Solution

The mathematical model for the incompressible two-dimensional/axisymmetric non-Newtonian fluid flows and heat transfer analysis in the region of stagnation point over a stretching/shrinking sheet and axisymmetric shrinking sheet is presented. The governing equations are transformed into dimensionles...

Full description

Saved in:
Bibliographic Details
Published in:Abstract and Applied Analysis 2013-01, Vol.2013 (2013), p.694-698-368
Main Authors: Khan, Yasir, Šmarda, Zdeněk
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a623t-b743d22a0963fea42c61087fd85e69e5fdb8f6decb20772a2c16d3bd6c463f8c3
cites cdi_FETCH-LOGICAL-a623t-b743d22a0963fea42c61087fd85e69e5fdb8f6decb20772a2c16d3bd6c463f8c3
container_end_page 698-368
container_issue 2013
container_start_page 694
container_title Abstract and Applied Analysis
container_volume 2013
creator Khan, Yasir
Šmarda, Zdeněk
description The mathematical model for the incompressible two-dimensional/axisymmetric non-Newtonian fluid flows and heat transfer analysis in the region of stagnation point over a stretching/shrinking sheet and axisymmetric shrinking sheet is presented. The governing equations are transformed into dimensionless nonlinear ordinary differential equations by similarity transformation. Analytical technique, namely, the homotopy perturbation method (HPM) with general form of linear operator is used to solve dimensionless nonlinear ordinary differential equations. The series solution is obtained without using the diagonal Padé approximants to handle the boundary condition at infinity which can be considered as a clear advantage of homotopy perturbation technique over the decomposition method. The effects of the pertinent parameters on the velocity and temperature field are discussed through graphs. To the best of authors’ knowledge, HPM solution with general form of linear operator for two-dimensional/axisymmetric non-Newtonian fluid flows and heat transfer analysis in the region of stagnation point is presented for the first time in the literature.
doi_str_mv 10.1155/2013/342690
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_976b9ba646b8471ab2c272a438e30404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A369794188</galeid><airiti_id>P20160825001_201312_201609070065_201609070065_694_698_368</airiti_id><doaj_id>oai_doaj_org_article_976b9ba646b8471ab2c272a438e30404</doaj_id><sourcerecordid>A369794188</sourcerecordid><originalsourceid>FETCH-LOGICAL-a623t-b743d22a0963fea42c61087fd85e69e5fdb8f6decb20772a2c16d3bd6c463f8c3</originalsourceid><addsrcrecordid>eNqFkl2LEzEUhgdRcK1eeS0EvBGlu_lOxitLce1CXRfcvQ5nksw2ZZrU-aDUX2_aKZX1RoYhM-885yEnc4riLcGXhAhxRTFhV4xTWeJnxQWRWk0xx-Xz_Iy1mDKmxMviVdetMcZMcX5RmIWHHt23ELvat2gWodl3oUMpon7l0SL4jY-_0XWTdijVCNBtitNbv-tTDBBzPgT3Gc3QIm1Sn7Z79N33q-TQz9QMfUjxdfGihqbzb07rpHi4_no_X0yXP77dzGfLKUjK-mmlOHOUAi4lqz1wamXesaqdFl6WXtSu0rV03lYUK0WBWiIdq5y0PBdoyybFzeh1CdZm24YNtHuTIJhjkNpHA20fbONNqWRVViC5rDRXBCpqaVZypj3Lp8Wz68vo2rZp7W3vB9sE90Q6f1ie0tMCAIawknFeKiqy4sNZ8WvwXW82obO-aSD6NHSGcCWEwFQc0Pf_oOs0tPk_HChJKNc8H9GkuBypR8gthFinvgWbL-c3wabo65DzGZOlKjnROhd8Ggtsm7qu9fV5_wSbw7CYw7CYcVgy_XGkVyE62IX_wO9G2GfE13CGueSMHzq6G79DaEMf_vZzly0SayowJkcjoeYYlVhhLMXTF1nyfGvDpGZ_AEpd2vk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1461248462</pqid></control><display><type>article</type><title>Heat Transfer Analysis on the Hiemenz Flow of a Non-Newtonian Fluid: A Homotopy Method Solution</title><source>Publicly Available Content Database</source><source>Wiley Open Access Journals</source><creator>Khan, Yasir ; Šmarda, Zdeněk</creator><contributor>Růžičková, Miroslava</contributor><creatorcontrib>Khan, Yasir ; Šmarda, Zdeněk ; Růžičková, Miroslava</creatorcontrib><description>The mathematical model for the incompressible two-dimensional/axisymmetric non-Newtonian fluid flows and heat transfer analysis in the region of stagnation point over a stretching/shrinking sheet and axisymmetric shrinking sheet is presented. The governing equations are transformed into dimensionless nonlinear ordinary differential equations by similarity transformation. Analytical technique, namely, the homotopy perturbation method (HPM) with general form of linear operator is used to solve dimensionless nonlinear ordinary differential equations. The series solution is obtained without using the diagonal Padé approximants to handle the boundary condition at infinity which can be considered as a clear advantage of homotopy perturbation technique over the decomposition method. The effects of the pertinent parameters on the velocity and temperature field are discussed through graphs. To the best of authors’ knowledge, HPM solution with general form of linear operator for two-dimensional/axisymmetric non-Newtonian fluid flows and heat transfer analysis in the region of stagnation point is presented for the first time in the literature.</description><identifier>ISSN: 1085-3375</identifier><identifier>EISSN: 1687-0409</identifier><identifier>DOI: 10.1155/2013/342690</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Limiteds</publisher><subject>Axisymmetric ; Colleges &amp; universities ; Coordinate transformations ; Electrical engineering ; Engineering research ; Fluids ; Heat transfer ; Homotopy theory ; Mathematical research ; Navier-Stokes equations ; Ordinary differential equations ; Temperature ; Thrust bearings ; Velocity</subject><ispartof>Abstract and Applied Analysis, 2013-01, Vol.2013 (2013), p.694-698-368</ispartof><rights>Copyright © 2013 Yasir Khan and Zdeněk Šmarda.</rights><rights>COPYRIGHT 2013 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2013 Yasir Khan and Zdenek Smarda. Yasir Khan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright 2013 Hindawi Publishing Corporation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a623t-b743d22a0963fea42c61087fd85e69e5fdb8f6decb20772a2c16d3bd6c463f8c3</citedby><cites>FETCH-LOGICAL-a623t-b743d22a0963fea42c61087fd85e69e5fdb8f6decb20772a2c16d3bd6c463f8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1461248462/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1461248462?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,25732,27903,27904,36991,36992,44569,74872</link.rule.ids></links><search><contributor>Růžičková, Miroslava</contributor><creatorcontrib>Khan, Yasir</creatorcontrib><creatorcontrib>Šmarda, Zdeněk</creatorcontrib><title>Heat Transfer Analysis on the Hiemenz Flow of a Non-Newtonian Fluid: A Homotopy Method Solution</title><title>Abstract and Applied Analysis</title><description>The mathematical model for the incompressible two-dimensional/axisymmetric non-Newtonian fluid flows and heat transfer analysis in the region of stagnation point over a stretching/shrinking sheet and axisymmetric shrinking sheet is presented. The governing equations are transformed into dimensionless nonlinear ordinary differential equations by similarity transformation. Analytical technique, namely, the homotopy perturbation method (HPM) with general form of linear operator is used to solve dimensionless nonlinear ordinary differential equations. The series solution is obtained without using the diagonal Padé approximants to handle the boundary condition at infinity which can be considered as a clear advantage of homotopy perturbation technique over the decomposition method. The effects of the pertinent parameters on the velocity and temperature field are discussed through graphs. To the best of authors’ knowledge, HPM solution with general form of linear operator for two-dimensional/axisymmetric non-Newtonian fluid flows and heat transfer analysis in the region of stagnation point is presented for the first time in the literature.</description><subject>Axisymmetric</subject><subject>Colleges &amp; universities</subject><subject>Coordinate transformations</subject><subject>Electrical engineering</subject><subject>Engineering research</subject><subject>Fluids</subject><subject>Heat transfer</subject><subject>Homotopy theory</subject><subject>Mathematical research</subject><subject>Navier-Stokes equations</subject><subject>Ordinary differential equations</subject><subject>Temperature</subject><subject>Thrust bearings</subject><subject>Velocity</subject><issn>1085-3375</issn><issn>1687-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkl2LEzEUhgdRcK1eeS0EvBGlu_lOxitLce1CXRfcvQ5nksw2ZZrU-aDUX2_aKZX1RoYhM-885yEnc4riLcGXhAhxRTFhV4xTWeJnxQWRWk0xx-Xz_Iy1mDKmxMviVdetMcZMcX5RmIWHHt23ELvat2gWodl3oUMpon7l0SL4jY-_0XWTdijVCNBtitNbv-tTDBBzPgT3Gc3QIm1Sn7Z79N33q-TQz9QMfUjxdfGihqbzb07rpHi4_no_X0yXP77dzGfLKUjK-mmlOHOUAi4lqz1wamXesaqdFl6WXtSu0rV03lYUK0WBWiIdq5y0PBdoyybFzeh1CdZm24YNtHuTIJhjkNpHA20fbONNqWRVViC5rDRXBCpqaVZypj3Lp8Wz68vo2rZp7W3vB9sE90Q6f1ie0tMCAIawknFeKiqy4sNZ8WvwXW82obO-aSD6NHSGcCWEwFQc0Pf_oOs0tPk_HChJKNc8H9GkuBypR8gthFinvgWbL-c3wabo65DzGZOlKjnROhd8Ggtsm7qu9fV5_wSbw7CYw7CYcVgy_XGkVyE62IX_wO9G2GfE13CGueSMHzq6G79DaEMf_vZzly0SayowJkcjoeYYlVhhLMXTF1nyfGvDpGZ_AEpd2vk</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Khan, Yasir</creator><creator>Šmarda, Zdeněk</creator><general>Hindawi Limiteds</general><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>188</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope></search><sort><creationdate>20130101</creationdate><title>Heat Transfer Analysis on the Hiemenz Flow of a Non-Newtonian Fluid: A Homotopy Method Solution</title><author>Khan, Yasir ; Šmarda, Zdeněk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a623t-b743d22a0963fea42c61087fd85e69e5fdb8f6decb20772a2c16d3bd6c463f8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Axisymmetric</topic><topic>Colleges &amp; universities</topic><topic>Coordinate transformations</topic><topic>Electrical engineering</topic><topic>Engineering research</topic><topic>Fluids</topic><topic>Heat transfer</topic><topic>Homotopy theory</topic><topic>Mathematical research</topic><topic>Navier-Stokes equations</topic><topic>Ordinary differential equations</topic><topic>Temperature</topic><topic>Thrust bearings</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Yasir</creatorcontrib><creatorcontrib>Šmarda, Zdeněk</creatorcontrib><collection>Airiti Library</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Abstract and Applied Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Yasir</au><au>Šmarda, Zdeněk</au><au>Růžičková, Miroslava</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat Transfer Analysis on the Hiemenz Flow of a Non-Newtonian Fluid: A Homotopy Method Solution</atitle><jtitle>Abstract and Applied Analysis</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>694</spage><epage>698-368</epage><pages>694-698-368</pages><issn>1085-3375</issn><eissn>1687-0409</eissn><abstract>The mathematical model for the incompressible two-dimensional/axisymmetric non-Newtonian fluid flows and heat transfer analysis in the region of stagnation point over a stretching/shrinking sheet and axisymmetric shrinking sheet is presented. The governing equations are transformed into dimensionless nonlinear ordinary differential equations by similarity transformation. Analytical technique, namely, the homotopy perturbation method (HPM) with general form of linear operator is used to solve dimensionless nonlinear ordinary differential equations. The series solution is obtained without using the diagonal Padé approximants to handle the boundary condition at infinity which can be considered as a clear advantage of homotopy perturbation technique over the decomposition method. The effects of the pertinent parameters on the velocity and temperature field are discussed through graphs. To the best of authors’ knowledge, HPM solution with general form of linear operator for two-dimensional/axisymmetric non-Newtonian fluid flows and heat transfer analysis in the region of stagnation point is presented for the first time in the literature.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Limiteds</pub><doi>10.1155/2013/342690</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1085-3375
ispartof Abstract and Applied Analysis, 2013-01, Vol.2013 (2013), p.694-698-368
issn 1085-3375
1687-0409
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_976b9ba646b8471ab2c272a438e30404
source Publicly Available Content Database; Wiley Open Access Journals
subjects Axisymmetric
Colleges & universities
Coordinate transformations
Electrical engineering
Engineering research
Fluids
Heat transfer
Homotopy theory
Mathematical research
Navier-Stokes equations
Ordinary differential equations
Temperature
Thrust bearings
Velocity
title Heat Transfer Analysis on the Hiemenz Flow of a Non-Newtonian Fluid: A Homotopy Method Solution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A28%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20Transfer%20Analysis%20on%20the%20Hiemenz%20Flow%20of%20a%20Non-Newtonian%20Fluid:%20A%20Homotopy%20Method%20Solution&rft.jtitle=Abstract%20and%20Applied%20Analysis&rft.au=Khan,%20Yasir&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=694&rft.epage=698-368&rft.pages=694-698-368&rft.issn=1085-3375&rft.eissn=1687-0409&rft_id=info:doi/10.1155/2013/342690&rft_dat=%3Cgale_doaj_%3EA369794188%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a623t-b743d22a0963fea42c61087fd85e69e5fdb8f6decb20772a2c16d3bd6c463f8c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1461248462&rft_id=info:pmid/&rft_galeid=A369794188&rft_airiti_id=P20160825001_201312_201609070065_201609070065_694_698_368&rfr_iscdi=true