Loading…
Heat Transfer Analysis on the Hiemenz Flow of a Non-Newtonian Fluid: A Homotopy Method Solution
The mathematical model for the incompressible two-dimensional/axisymmetric non-Newtonian fluid flows and heat transfer analysis in the region of stagnation point over a stretching/shrinking sheet and axisymmetric shrinking sheet is presented. The governing equations are transformed into dimensionles...
Saved in:
Published in: | Abstract and Applied Analysis 2013-01, Vol.2013 (2013), p.694-698-368 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a623t-b743d22a0963fea42c61087fd85e69e5fdb8f6decb20772a2c16d3bd6c463f8c3 |
---|---|
cites | cdi_FETCH-LOGICAL-a623t-b743d22a0963fea42c61087fd85e69e5fdb8f6decb20772a2c16d3bd6c463f8c3 |
container_end_page | 698-368 |
container_issue | 2013 |
container_start_page | 694 |
container_title | Abstract and Applied Analysis |
container_volume | 2013 |
creator | Khan, Yasir Šmarda, Zdeněk |
description | The mathematical model for the incompressible two-dimensional/axisymmetric non-Newtonian fluid flows and heat transfer analysis in the region of stagnation point over a stretching/shrinking sheet and axisymmetric shrinking sheet is presented. The governing equations are transformed into dimensionless nonlinear ordinary differential equations by similarity transformation. Analytical technique, namely, the homotopy perturbation method (HPM) with general form of linear operator is used to solve dimensionless nonlinear ordinary differential equations. The series solution is obtained without using the diagonal Padé approximants to handle the boundary condition at infinity which can be considered as a clear advantage of homotopy perturbation technique over the decomposition method. The effects of the pertinent parameters on the velocity and temperature field are discussed through graphs. To the best of authors’ knowledge, HPM solution with general form of linear operator for two-dimensional/axisymmetric non-Newtonian fluid flows and heat transfer analysis in the region of stagnation point is presented for the first time in the literature. |
doi_str_mv | 10.1155/2013/342690 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_976b9ba646b8471ab2c272a438e30404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A369794188</galeid><airiti_id>P20160825001_201312_201609070065_201609070065_694_698_368</airiti_id><doaj_id>oai_doaj_org_article_976b9ba646b8471ab2c272a438e30404</doaj_id><sourcerecordid>A369794188</sourcerecordid><originalsourceid>FETCH-LOGICAL-a623t-b743d22a0963fea42c61087fd85e69e5fdb8f6decb20772a2c16d3bd6c463f8c3</originalsourceid><addsrcrecordid>eNqFkl2LEzEUhgdRcK1eeS0EvBGlu_lOxitLce1CXRfcvQ5nksw2ZZrU-aDUX2_aKZX1RoYhM-885yEnc4riLcGXhAhxRTFhV4xTWeJnxQWRWk0xx-Xz_Iy1mDKmxMviVdetMcZMcX5RmIWHHt23ELvat2gWodl3oUMpon7l0SL4jY-_0XWTdijVCNBtitNbv-tTDBBzPgT3Gc3QIm1Sn7Z79N33q-TQz9QMfUjxdfGihqbzb07rpHi4_no_X0yXP77dzGfLKUjK-mmlOHOUAi4lqz1wamXesaqdFl6WXtSu0rV03lYUK0WBWiIdq5y0PBdoyybFzeh1CdZm24YNtHuTIJhjkNpHA20fbONNqWRVViC5rDRXBCpqaVZypj3Lp8Wz68vo2rZp7W3vB9sE90Q6f1ie0tMCAIawknFeKiqy4sNZ8WvwXW82obO-aSD6NHSGcCWEwFQc0Pf_oOs0tPk_HChJKNc8H9GkuBypR8gthFinvgWbL-c3wabo65DzGZOlKjnROhd8Ggtsm7qu9fV5_wSbw7CYw7CYcVgy_XGkVyE62IX_wO9G2GfE13CGueSMHzq6G79DaEMf_vZzly0SayowJkcjoeYYlVhhLMXTF1nyfGvDpGZ_AEpd2vk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1461248462</pqid></control><display><type>article</type><title>Heat Transfer Analysis on the Hiemenz Flow of a Non-Newtonian Fluid: A Homotopy Method Solution</title><source>Publicly Available Content Database</source><source>Wiley Open Access Journals</source><creator>Khan, Yasir ; Šmarda, Zdeněk</creator><contributor>Růžičková, Miroslava</contributor><creatorcontrib>Khan, Yasir ; Šmarda, Zdeněk ; Růžičková, Miroslava</creatorcontrib><description>The mathematical model for the incompressible two-dimensional/axisymmetric non-Newtonian fluid flows and heat transfer analysis in the region of stagnation point over a stretching/shrinking sheet and axisymmetric shrinking sheet is presented. The governing equations are transformed into dimensionless nonlinear ordinary differential equations by similarity transformation. Analytical technique, namely, the homotopy perturbation method (HPM) with general form of linear operator is used to solve dimensionless nonlinear ordinary differential equations. The series solution is obtained without using the diagonal Padé approximants to handle the boundary condition at infinity which can be considered as a clear advantage of homotopy perturbation technique over the decomposition method. The effects of the pertinent parameters on the velocity and temperature field are discussed through graphs. To the best of authors’ knowledge, HPM solution with general form of linear operator for two-dimensional/axisymmetric non-Newtonian fluid flows and heat transfer analysis in the region of stagnation point is presented for the first time in the literature.</description><identifier>ISSN: 1085-3375</identifier><identifier>EISSN: 1687-0409</identifier><identifier>DOI: 10.1155/2013/342690</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Limiteds</publisher><subject>Axisymmetric ; Colleges & universities ; Coordinate transformations ; Electrical engineering ; Engineering research ; Fluids ; Heat transfer ; Homotopy theory ; Mathematical research ; Navier-Stokes equations ; Ordinary differential equations ; Temperature ; Thrust bearings ; Velocity</subject><ispartof>Abstract and Applied Analysis, 2013-01, Vol.2013 (2013), p.694-698-368</ispartof><rights>Copyright © 2013 Yasir Khan and Zdeněk Šmarda.</rights><rights>COPYRIGHT 2013 John Wiley & Sons, Inc.</rights><rights>Copyright © 2013 Yasir Khan and Zdenek Smarda. Yasir Khan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright 2013 Hindawi Publishing Corporation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a623t-b743d22a0963fea42c61087fd85e69e5fdb8f6decb20772a2c16d3bd6c463f8c3</citedby><cites>FETCH-LOGICAL-a623t-b743d22a0963fea42c61087fd85e69e5fdb8f6decb20772a2c16d3bd6c463f8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1461248462/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1461248462?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,25732,27903,27904,36991,36992,44569,74872</link.rule.ids></links><search><contributor>Růžičková, Miroslava</contributor><creatorcontrib>Khan, Yasir</creatorcontrib><creatorcontrib>Šmarda, Zdeněk</creatorcontrib><title>Heat Transfer Analysis on the Hiemenz Flow of a Non-Newtonian Fluid: A Homotopy Method Solution</title><title>Abstract and Applied Analysis</title><description>The mathematical model for the incompressible two-dimensional/axisymmetric non-Newtonian fluid flows and heat transfer analysis in the region of stagnation point over a stretching/shrinking sheet and axisymmetric shrinking sheet is presented. The governing equations are transformed into dimensionless nonlinear ordinary differential equations by similarity transformation. Analytical technique, namely, the homotopy perturbation method (HPM) with general form of linear operator is used to solve dimensionless nonlinear ordinary differential equations. The series solution is obtained without using the diagonal Padé approximants to handle the boundary condition at infinity which can be considered as a clear advantage of homotopy perturbation technique over the decomposition method. The effects of the pertinent parameters on the velocity and temperature field are discussed through graphs. To the best of authors’ knowledge, HPM solution with general form of linear operator for two-dimensional/axisymmetric non-Newtonian fluid flows and heat transfer analysis in the region of stagnation point is presented for the first time in the literature.</description><subject>Axisymmetric</subject><subject>Colleges & universities</subject><subject>Coordinate transformations</subject><subject>Electrical engineering</subject><subject>Engineering research</subject><subject>Fluids</subject><subject>Heat transfer</subject><subject>Homotopy theory</subject><subject>Mathematical research</subject><subject>Navier-Stokes equations</subject><subject>Ordinary differential equations</subject><subject>Temperature</subject><subject>Thrust bearings</subject><subject>Velocity</subject><issn>1085-3375</issn><issn>1687-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkl2LEzEUhgdRcK1eeS0EvBGlu_lOxitLce1CXRfcvQ5nksw2ZZrU-aDUX2_aKZX1RoYhM-885yEnc4riLcGXhAhxRTFhV4xTWeJnxQWRWk0xx-Xz_Iy1mDKmxMviVdetMcZMcX5RmIWHHt23ELvat2gWodl3oUMpon7l0SL4jY-_0XWTdijVCNBtitNbv-tTDBBzPgT3Gc3QIm1Sn7Z79N33q-TQz9QMfUjxdfGihqbzb07rpHi4_no_X0yXP77dzGfLKUjK-mmlOHOUAi4lqz1wamXesaqdFl6WXtSu0rV03lYUK0WBWiIdq5y0PBdoyybFzeh1CdZm24YNtHuTIJhjkNpHA20fbONNqWRVViC5rDRXBCpqaVZypj3Lp8Wz68vo2rZp7W3vB9sE90Q6f1ie0tMCAIawknFeKiqy4sNZ8WvwXW82obO-aSD6NHSGcCWEwFQc0Pf_oOs0tPk_HChJKNc8H9GkuBypR8gthFinvgWbL-c3wabo65DzGZOlKjnROhd8Ggtsm7qu9fV5_wSbw7CYw7CYcVgy_XGkVyE62IX_wO9G2GfE13CGueSMHzq6G79DaEMf_vZzly0SayowJkcjoeYYlVhhLMXTF1nyfGvDpGZ_AEpd2vk</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Khan, Yasir</creator><creator>Šmarda, Zdeněk</creator><general>Hindawi Limiteds</general><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>188</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope></search><sort><creationdate>20130101</creationdate><title>Heat Transfer Analysis on the Hiemenz Flow of a Non-Newtonian Fluid: A Homotopy Method Solution</title><author>Khan, Yasir ; Šmarda, Zdeněk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a623t-b743d22a0963fea42c61087fd85e69e5fdb8f6decb20772a2c16d3bd6c463f8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Axisymmetric</topic><topic>Colleges & universities</topic><topic>Coordinate transformations</topic><topic>Electrical engineering</topic><topic>Engineering research</topic><topic>Fluids</topic><topic>Heat transfer</topic><topic>Homotopy theory</topic><topic>Mathematical research</topic><topic>Navier-Stokes equations</topic><topic>Ordinary differential equations</topic><topic>Temperature</topic><topic>Thrust bearings</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Yasir</creatorcontrib><creatorcontrib>Šmarda, Zdeněk</creatorcontrib><collection>Airiti Library</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Abstract and Applied Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Yasir</au><au>Šmarda, Zdeněk</au><au>Růžičková, Miroslava</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat Transfer Analysis on the Hiemenz Flow of a Non-Newtonian Fluid: A Homotopy Method Solution</atitle><jtitle>Abstract and Applied Analysis</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>694</spage><epage>698-368</epage><pages>694-698-368</pages><issn>1085-3375</issn><eissn>1687-0409</eissn><abstract>The mathematical model for the incompressible two-dimensional/axisymmetric non-Newtonian fluid flows and heat transfer analysis in the region of stagnation point over a stretching/shrinking sheet and axisymmetric shrinking sheet is presented. The governing equations are transformed into dimensionless nonlinear ordinary differential equations by similarity transformation. Analytical technique, namely, the homotopy perturbation method (HPM) with general form of linear operator is used to solve dimensionless nonlinear ordinary differential equations. The series solution is obtained without using the diagonal Padé approximants to handle the boundary condition at infinity which can be considered as a clear advantage of homotopy perturbation technique over the decomposition method. The effects of the pertinent parameters on the velocity and temperature field are discussed through graphs. To the best of authors’ knowledge, HPM solution with general form of linear operator for two-dimensional/axisymmetric non-Newtonian fluid flows and heat transfer analysis in the region of stagnation point is presented for the first time in the literature.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Limiteds</pub><doi>10.1155/2013/342690</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1085-3375 |
ispartof | Abstract and Applied Analysis, 2013-01, Vol.2013 (2013), p.694-698-368 |
issn | 1085-3375 1687-0409 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_976b9ba646b8471ab2c272a438e30404 |
source | Publicly Available Content Database; Wiley Open Access Journals |
subjects | Axisymmetric Colleges & universities Coordinate transformations Electrical engineering Engineering research Fluids Heat transfer Homotopy theory Mathematical research Navier-Stokes equations Ordinary differential equations Temperature Thrust bearings Velocity |
title | Heat Transfer Analysis on the Hiemenz Flow of a Non-Newtonian Fluid: A Homotopy Method Solution |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A28%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20Transfer%20Analysis%20on%20the%20Hiemenz%20Flow%20of%20a%20Non-Newtonian%20Fluid:%20A%20Homotopy%20Method%20Solution&rft.jtitle=Abstract%20and%20Applied%20Analysis&rft.au=Khan,%20Yasir&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=694&rft.epage=698-368&rft.pages=694-698-368&rft.issn=1085-3375&rft.eissn=1687-0409&rft_id=info:doi/10.1155/2013/342690&rft_dat=%3Cgale_doaj_%3EA369794188%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a623t-b743d22a0963fea42c61087fd85e69e5fdb8f6decb20772a2c16d3bd6c463f8c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1461248462&rft_id=info:pmid/&rft_galeid=A369794188&rft_airiti_id=P20160825001_201312_201609070065_201609070065_694_698_368&rfr_iscdi=true |