Loading…
Solvability of nonlinear difference equations of fourth order
In this article we show the existence of solutions to the nonlinear difference equation $$ x_n=\frac{x_{n-3}x_{n-4}}{x_{n-1}(a_n+b_nx_{n-2}x_{n-3}x_{n-4})}, \quad n\in\mathbb{N}_0, $$ where the sequences $(a_n)_{n\in\mathbb{N}_0}$ and $(b_n)_{n\in\mathbb{N}_0}$, and initial the values $x_{-j}$, $j=\...
Saved in:
Published in: | Electronic journal of differential equations 2014-12, Vol.2014 (264), p.1-14 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this article we show the existence of solutions to the nonlinear difference equation $$ x_n=\frac{x_{n-3}x_{n-4}}{x_{n-1}(a_n+b_nx_{n-2}x_{n-3}x_{n-4})}, \quad n\in\mathbb{N}_0, $$ where the sequences $(a_n)_{n\in\mathbb{N}_0}$ and $(b_n)_{n\in\mathbb{N}_0}$, and initial the values $x_{-j}$, $j=\overline{1,4}$, are real numbers. Also we find the set of initial values for which solutions are undefinable when $a_n\ne 0$ and $b_n\neq 0$ for every $n\in\mathbb{N}_0$. When these two sequences are constant, we describe the long-term behavior of the solutions in detail. |
---|---|
ISSN: | 1072-6691 |