Loading…

Predicting the Effect of Processing Parameters on Caliber-Rolled Mg Alloys through Machine Learning

The multi-pass caliber rolling (MPCR) of Mg alloy has attracted much attention due to its engineering and manufacturing advantages. The MPCR process induces a unique microhardness variation, which has only been predicted using a finite element analysis thus far. This study employed machine learning...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2022-10, Vol.12 (20), p.10646
Main Authors: Yu, Jinyeong, Oh, Seung Jun, Baek, Seunghun, Kim, Jonghyun, Lee, Taekyung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The multi-pass caliber rolling (MPCR) of Mg alloy has attracted much attention due to its engineering and manufacturing advantages. The MPCR process induces a unique microhardness variation, which has only been predicted using a finite element analysis thus far. This study employed machine learning as an alternative method of microhardness prediction for the first time. For this purpose, two machine-learning approaches were evaluated: the artificial neural network (ANN) approach and that aided by generative adversarial networks (GANs). These approaches predicted microhardness variation in the most difficult case (i.e., after the final-pass MPCR deformation). The machine-learning approaches provided a good prediction for the center area of the cross-section, because the prediction was relatively easy due to the small deviation in microhardness. In contrast, the ANN failed to anticipate the shifted hardness variation in the side sections, leading to a low predictability. Such an issue was effectively improved by integrating the GAN with the ANN.
ISSN:2076-3417
2076-3417
DOI:10.3390/app122010646