Loading…
A combination of seismic refraction and ambient noise methods to detect landslide-prone materials
A portion of the west of Mexico City is densely populated in an abrupt topography, whose volcano-sedimentary materials increase the likelihood of landslides. We exploited the geometry of a quadrangular geophones array to apply Seismic Refraction Tomography (SRT) and Ambient Noise Tomography (ANT) me...
Saved in:
Published in: | Geofísica internacional 2024-07, Vol.63 (3), p.949-958 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A portion of the west of Mexico City is densely populated in an abrupt topography, whose volcano-sedimentary materials increase the likelihood of landslides. We exploited the geometry of a quadrangular geophones array to apply Seismic Refraction Tomography (SRT) and Ambient Noise Tomography (ANT) methods and explore the extent of landslide-prone materials. The results show low-velocity areas (Vs < 100 m/s, being Vs group velocities) associated with materials that have lost their resistance due to the increase in pore pressure and the places where eventually, more landslides will occur (120 < Vs < 200 m/s) if mitigation work is not carried out. The most stable zones correspond to materials with velocity values greater than 250 m/s that overlap a bedrock at an average depth of 8 m. Thus, when it is not advisable to perform active source experiments, ANT can provide practical results to determine the extension of the sliding materials. |
---|---|
ISSN: | 0016-7169 2954-436X |
DOI: | 10.22201/igeof.2954436xe.2024.63.3.1585 |