Loading…
Condensate and superfluid fraction of homogeneous Bose gases in a self-consistent Popov approximation
We study the condensate and superfluid fraction of a homogeneous gas of weakly interacting bosons in three spatial dimensions by adopting a self-consistent Popov approximation, comparing this approach with other theoretical schemes. Differently from the superfluid fraction, we find that at finite te...
Saved in:
Published in: | Scientific reports 2024-07, Vol.14 (1), p.15034-10, Article 15034 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the condensate and superfluid fraction of a homogeneous gas of weakly interacting bosons in three spatial dimensions by adopting a self-consistent Popov approximation, comparing this approach with other theoretical schemes. Differently from the superfluid fraction, we find that at finite temperature the condensate fraction is a non-monotonic function of the interaction strength, presenting a global maximum at a characteristic value of the gas parameter, which grows as the temperature increases. This non-monotonic behavior has not yet been observed, but could be tested with the available experimental setups of ultracold bosonic atoms confined in a box potential. We clearly identify the region of parameter space that is of experimental interest to look for this behavior and provide explicit expressions for the relevant observables. Finite size effects are also discussed within a semiclassical approximation. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-024-65897-2 |