Loading…
Numerical Simulation for a High-Dimensional Chaotic Lorenz System Based on Gegenbauer Wavelet Polynomials
We provide an effective simulation to investigate the solution behavior of nine-dimensional chaos for the fractional (Caputo-sense) Lorenz system using a new approximate technique of the spectral collocation method (SCM) depending on the properties of Gegenbauer wavelet polynomials (GWPs). This tech...
Saved in:
Published in: | Mathematics (Basel) 2023-01, Vol.11 (2), p.472 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We provide an effective simulation to investigate the solution behavior of nine-dimensional chaos for the fractional (Caputo-sense) Lorenz system using a new approximate technique of the spectral collocation method (SCM) depending on the properties of Gegenbauer wavelet polynomials (GWPs). This technique reduces the given problem to a non-linear system of algebraic equations. We satisfy the accuracy and efficiency of the proposed method by computing the residual error function. The numerical solutions obtained are compared with the results obtained by implementing the Runge–Kutta method of order four. The results show that the given procedure is an easily applied and efficient tool to simulate this model. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math11020472 |