Loading…

A Methodology for the Automated Delineation of Crop Tree Crowns from UAV-Based Aerial Imagery by Means of Morphological Image Analysis

The popularisation of aerial remote sensing using unmanned aerial vehicles (UAV), has boosted the capacities of agronomists and researchers to offer farmers valuable data regarding the status of their crops. This paper describes a methodology for the automated detection and individual delineation of...

Full description

Saved in:
Bibliographic Details
Published in:Agronomy (Basel) 2022-01, Vol.12 (1), p.43
Main Authors: Ponce, Juan Manuel, Aquino, Arturo, Tejada, Diego, Al-Hadithi, Basil Mohammed, Andújar, José Manuel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The popularisation of aerial remote sensing using unmanned aerial vehicles (UAV), has boosted the capacities of agronomists and researchers to offer farmers valuable data regarding the status of their crops. This paper describes a methodology for the automated detection and individual delineation of tree crowns in aerial representations of crop fields by means of image processing and analysis techniques, providing accurate information about plant population and canopy coverage in intensive-farming orchards with a row-based plant arrangement. To that end, after pre-processing initial aerial captures by means of photogrammetry and morphological image analysis, a resulting binary representation of the land plot surveyed is treated at connected component-level in order to separate overlapping tree crown projections. Then, those components are morphologically transformed into a set of seeds with which tree crowns are finally delineated, establishing the boundaries between them when they appear overlapped. This solution was tested on images from three different orchards, achieving semantic segmentations in which more than 94% of tree canopy-belonging pixels were correctly classified, and more than 98% of trees were successfully detected when assessing the methodology capacities for estimating the overall plant population. According to these results, the methodology represents a promising tool for automating the inventorying of plants and estimating individual tree-canopy coverage in intensive tree-based orchards.
ISSN:2073-4395
2073-4395
DOI:10.3390/agronomy12010043