Loading…
Superstability of Generalized Multiplicative Functionals
Let X be a set with a binary operation[composite function] such that, for each x,y,z∈X , either(x[composite function]y)[composite function]z=(x[composite function]z)[composite function]y , or z[composite function](x[composite function]y)=x[composite function](z[composite function]y) . We show the su...
Saved in:
Published in: | Journal of inequalities and applications 2009-01, Vol.2009 (1), p.486375-486375 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let X be a set with a binary operation[composite function] such that, for each x,y,z∈X , either(x[composite function]y)[composite function]z=(x[composite function]z)[composite function]y , or z[composite function](x[composite function]y)=x[composite function](z[composite function]y) . We show the superstability of the functional equationg(x[composite function]y)=g(x)g(y) . More explicitly, if [straight epsilon]≥0 andf:X[arrow right]... satisfies |f(x[composite function]y)-f(x)f(y)|≤[straight epsilon] for each x,y∈X , then f(x[composite function]y)=f(x)f(y) for allx,y∈X , or |f(x)|≤(1+1+4[straight epsilon])/2 for all x∈X . In the latter case, the constant (1+1+4[straight epsilon])/2 is the best possible. |
---|---|
ISSN: | 1025-5834 1029-242X 1029-242X |
DOI: | 10.1186/1029-242X-2009-486375 |