Loading…
Superstability of Generalized Multiplicative Functionals
Let X be a set with a binary operation[composite function] such that, for each x,y,z∈X , either(x[composite function]y)[composite function]z=(x[composite function]z)[composite function]y , or z[composite function](x[composite function]y)=x[composite function](z[composite function]y) . We show the su...
Saved in:
Published in: | Journal of inequalities and applications 2009-01, Vol.2009 (1), p.486375-486375 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 486375 |
container_issue | 1 |
container_start_page | 486375 |
container_title | Journal of inequalities and applications |
container_volume | 2009 |
creator | Miura, Takeshi Takagi, Hiroyuki Tsukada, Makoto Sin-Ei Takahasi |
description | Let X be a set with a binary operation[composite function] such that, for each x,y,z∈X , either(x[composite function]y)[composite function]z=(x[composite function]z)[composite function]y , or z[composite function](x[composite function]y)=x[composite function](z[composite function]y) . We show the superstability of the functional equationg(x[composite function]y)=g(x)g(y) . More explicitly, if [straight epsilon]≥0 andf:X[arrow right]... satisfies |f(x[composite function]y)-f(x)f(y)|≤[straight epsilon] for each x,y∈X , then f(x[composite function]y)=f(x)f(y) for allx,y∈X , or |f(x)|≤(1+1+4[straight epsilon])/2 for all x∈X . In the latter case, the constant (1+1+4[straight epsilon])/2 is the best possible. |
doi_str_mv | 10.1186/1029-242X-2009-486375 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9a68f01f8a0c48ebbf49146fee0c6f21</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9a68f01f8a0c48ebbf49146fee0c6f21</doaj_id><sourcerecordid>2286997431</sourcerecordid><originalsourceid>FETCH-LOGICAL-b1585-aa4251caefb0e89e55595f86593ae77c4a2d5150bf57d43ec709e8d2c1d62e403</originalsourceid><addsrcrecordid>eNpVkEtLxDAUhYMoOI7-BKG4r-bddCmD84ARFyq4C2l6Ixk6TW1TYfz1tlMRZnUu58IH50PoluB7QpR8IJjmKeX0I6UY5ylXkmXiDM3--_PjLVKhGL9EV123w5gSpvgMqde-gbaLpvCVj4ckuGQFNbSm8j9QJs99FX1TeWui_4Zk2dc2-lCbqrtGF24IuPnLOXpfPr0t1un2ZbVZPG7TggglUmM4FcQacAUGlYMQIhdOSZEzA1lmuaGlIAIXTmQlZ2AznIMqqSWlpMAxm6PNxC2D2emm9XvTHnQwXh-L0H5q00ZvK9C5kcph4pTBlisoCsdzwqUDwFa6YfAcrSdW4cMeSgt1HIaeQE8_Nuz1aFGPFvVoV092B9TdhGra8NVDF_Uu9O0oRishMWNUCvYL1Gx8Eg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856033265</pqid></control><display><type>article</type><title>Superstability of Generalized Multiplicative Functionals</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Miura, Takeshi ; Takagi, Hiroyuki ; Tsukada, Makoto ; Sin-Ei Takahasi</creator><creatorcontrib>Miura, Takeshi ; Takagi, Hiroyuki ; Tsukada, Makoto ; Sin-Ei Takahasi</creatorcontrib><description>Let X be a set with a binary operation[composite function] such that, for each x,y,z∈X , either(x[composite function]y)[composite function]z=(x[composite function]z)[composite function]y , or z[composite function](x[composite function]y)=x[composite function](z[composite function]y) . We show the superstability of the functional equationg(x[composite function]y)=g(x)g(y) . More explicitly, if [straight epsilon]≥0 andf:X[arrow right]... satisfies |f(x[composite function]y)-f(x)f(y)|≤[straight epsilon] for each x,y∈X , then f(x[composite function]y)=f(x)f(y) for allx,y∈X , or |f(x)|≤(1+1+4[straight epsilon])/2 for all x∈X . In the latter case, the constant (1+1+4[straight epsilon])/2 is the best possible.</description><identifier>ISSN: 1025-5834</identifier><identifier>ISSN: 1029-242X</identifier><identifier>EISSN: 1029-242X</identifier><identifier>DOI: 10.1186/1029-242X-2009-486375</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Mathematics ; Probability</subject><ispartof>Journal of inequalities and applications, 2009-01, Vol.2009 (1), p.486375-486375</ispartof><rights>Copyright © 2009 Takeshi Miura et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/856033265/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/856033265?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,25732,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Miura, Takeshi</creatorcontrib><creatorcontrib>Takagi, Hiroyuki</creatorcontrib><creatorcontrib>Tsukada, Makoto</creatorcontrib><creatorcontrib>Sin-Ei Takahasi</creatorcontrib><title>Superstability of Generalized Multiplicative Functionals</title><title>Journal of inequalities and applications</title><description>Let X be a set with a binary operation[composite function] such that, for each x,y,z∈X , either(x[composite function]y)[composite function]z=(x[composite function]z)[composite function]y , or z[composite function](x[composite function]y)=x[composite function](z[composite function]y) . We show the superstability of the functional equationg(x[composite function]y)=g(x)g(y) . More explicitly, if [straight epsilon]≥0 andf:X[arrow right]... satisfies |f(x[composite function]y)-f(x)f(y)|≤[straight epsilon] for each x,y∈X , then f(x[composite function]y)=f(x)f(y) for allx,y∈X , or |f(x)|≤(1+1+4[straight epsilon])/2 for all x∈X . In the latter case, the constant (1+1+4[straight epsilon])/2 is the best possible.</description><subject>Mathematics</subject><subject>Probability</subject><issn>1025-5834</issn><issn>1029-242X</issn><issn>1029-242X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkEtLxDAUhYMoOI7-BKG4r-bddCmD84ARFyq4C2l6Ixk6TW1TYfz1tlMRZnUu58IH50PoluB7QpR8IJjmKeX0I6UY5ylXkmXiDM3--_PjLVKhGL9EV123w5gSpvgMqde-gbaLpvCVj4ckuGQFNbSm8j9QJs99FX1TeWui_4Zk2dc2-lCbqrtGF24IuPnLOXpfPr0t1un2ZbVZPG7TggglUmM4FcQacAUGlYMQIhdOSZEzA1lmuaGlIAIXTmQlZ2AznIMqqSWlpMAxm6PNxC2D2emm9XvTHnQwXh-L0H5q00ZvK9C5kcph4pTBlisoCsdzwqUDwFa6YfAcrSdW4cMeSgt1HIaeQE8_Nuz1aFGPFvVoV092B9TdhGra8NVDF_Uu9O0oRishMWNUCvYL1Gx8Eg</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Miura, Takeshi</creator><creator>Takagi, Hiroyuki</creator><creator>Tsukada, Makoto</creator><creator>Sin-Ei Takahasi</creator><general>Springer Nature B.V</general><general>BioMed Central Ltd</general><general>SpringerOpen</general><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20090101</creationdate><title>Superstability of Generalized Multiplicative Functionals</title><author>Miura, Takeshi ; Takagi, Hiroyuki ; Tsukada, Makoto ; Sin-Ei Takahasi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b1585-aa4251caefb0e89e55595f86593ae77c4a2d5150bf57d43ec709e8d2c1d62e403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Mathematics</topic><topic>Probability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miura, Takeshi</creatorcontrib><creatorcontrib>Takagi, Hiroyuki</creatorcontrib><creatorcontrib>Tsukada, Makoto</creatorcontrib><creatorcontrib>Sin-Ei Takahasi</creatorcontrib><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of inequalities and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miura, Takeshi</au><au>Takagi, Hiroyuki</au><au>Tsukada, Makoto</au><au>Sin-Ei Takahasi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superstability of Generalized Multiplicative Functionals</atitle><jtitle>Journal of inequalities and applications</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>2009</volume><issue>1</issue><spage>486375</spage><epage>486375</epage><pages>486375-486375</pages><issn>1025-5834</issn><issn>1029-242X</issn><eissn>1029-242X</eissn><abstract>Let X be a set with a binary operation[composite function] such that, for each x,y,z∈X , either(x[composite function]y)[composite function]z=(x[composite function]z)[composite function]y , or z[composite function](x[composite function]y)=x[composite function](z[composite function]y) . We show the superstability of the functional equationg(x[composite function]y)=g(x)g(y) . More explicitly, if [straight epsilon]≥0 andf:X[arrow right]... satisfies |f(x[composite function]y)-f(x)f(y)|≤[straight epsilon] for each x,y∈X , then f(x[composite function]y)=f(x)f(y) for allx,y∈X , or |f(x)|≤(1+1+4[straight epsilon])/2 for all x∈X . In the latter case, the constant (1+1+4[straight epsilon])/2 is the best possible.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1186/1029-242X-2009-486375</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1025-5834 |
ispartof | Journal of inequalities and applications, 2009-01, Vol.2009 (1), p.486375-486375 |
issn | 1025-5834 1029-242X 1029-242X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_9a68f01f8a0c48ebbf49146fee0c6f21 |
source | Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access |
subjects | Mathematics Probability |
title | Superstability of Generalized Multiplicative Functionals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A27%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superstability%20of%20Generalized%20Multiplicative%20Functionals&rft.jtitle=Journal%20of%20inequalities%20and%20applications&rft.au=Miura,%20Takeshi&rft.date=2009-01-01&rft.volume=2009&rft.issue=1&rft.spage=486375&rft.epage=486375&rft.pages=486375-486375&rft.issn=1025-5834&rft.eissn=1029-242X&rft_id=info:doi/10.1186/1029-242X-2009-486375&rft_dat=%3Cproquest_doaj_%3E2286997431%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b1585-aa4251caefb0e89e55595f86593ae77c4a2d5150bf57d43ec709e8d2c1d62e403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=856033265&rft_id=info:pmid/&rfr_iscdi=true |