Loading…

Superstability of Generalized Multiplicative Functionals

Let X be a set with a binary operation[composite function] such that, for each x,y,z∈X , either(x[composite function]y)[composite function]z=(x[composite function]z)[composite function]y , or z[composite function](x[composite function]y)=x[composite function](z[composite function]y) . We show the su...

Full description

Saved in:
Bibliographic Details
Published in:Journal of inequalities and applications 2009-01, Vol.2009 (1), p.486375-486375
Main Authors: Miura, Takeshi, Takagi, Hiroyuki, Tsukada, Makoto, Sin-Ei Takahasi
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 486375
container_issue 1
container_start_page 486375
container_title Journal of inequalities and applications
container_volume 2009
creator Miura, Takeshi
Takagi, Hiroyuki
Tsukada, Makoto
Sin-Ei Takahasi
description Let X be a set with a binary operation[composite function] such that, for each x,y,z∈X , either(x[composite function]y)[composite function]z=(x[composite function]z)[composite function]y , or z[composite function](x[composite function]y)=x[composite function](z[composite function]y) . We show the superstability of the functional equationg(x[composite function]y)=g(x)g(y) . More explicitly, if [straight epsilon]≥0 andf:X[arrow right]... satisfies |f(x[composite function]y)-f(x)f(y)|≤[straight epsilon] for each x,y∈X , then f(x[composite function]y)=f(x)f(y) for allx,y∈X , or |f(x)|≤(1+1+4[straight epsilon])/2 for all x∈X . In the latter case, the constant (1+1+4[straight epsilon])/2 is the best possible.
doi_str_mv 10.1186/1029-242X-2009-486375
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9a68f01f8a0c48ebbf49146fee0c6f21</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9a68f01f8a0c48ebbf49146fee0c6f21</doaj_id><sourcerecordid>2286997431</sourcerecordid><originalsourceid>FETCH-LOGICAL-b1585-aa4251caefb0e89e55595f86593ae77c4a2d5150bf57d43ec709e8d2c1d62e403</originalsourceid><addsrcrecordid>eNpVkEtLxDAUhYMoOI7-BKG4r-bddCmD84ARFyq4C2l6Ixk6TW1TYfz1tlMRZnUu58IH50PoluB7QpR8IJjmKeX0I6UY5ylXkmXiDM3--_PjLVKhGL9EV123w5gSpvgMqde-gbaLpvCVj4ckuGQFNbSm8j9QJs99FX1TeWui_4Zk2dc2-lCbqrtGF24IuPnLOXpfPr0t1un2ZbVZPG7TggglUmM4FcQacAUGlYMQIhdOSZEzA1lmuaGlIAIXTmQlZ2AznIMqqSWlpMAxm6PNxC2D2emm9XvTHnQwXh-L0H5q00ZvK9C5kcph4pTBlisoCsdzwqUDwFa6YfAcrSdW4cMeSgt1HIaeQE8_Nuz1aFGPFvVoV092B9TdhGra8NVDF_Uu9O0oRishMWNUCvYL1Gx8Eg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856033265</pqid></control><display><type>article</type><title>Superstability of Generalized Multiplicative Functionals</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Miura, Takeshi ; Takagi, Hiroyuki ; Tsukada, Makoto ; Sin-Ei Takahasi</creator><creatorcontrib>Miura, Takeshi ; Takagi, Hiroyuki ; Tsukada, Makoto ; Sin-Ei Takahasi</creatorcontrib><description>Let X be a set with a binary operation[composite function] such that, for each x,y,z∈X , either(x[composite function]y)[composite function]z=(x[composite function]z)[composite function]y , or z[composite function](x[composite function]y)=x[composite function](z[composite function]y) . We show the superstability of the functional equationg(x[composite function]y)=g(x)g(y) . More explicitly, if [straight epsilon]≥0 andf:X[arrow right]... satisfies |f(x[composite function]y)-f(x)f(y)|≤[straight epsilon] for each x,y∈X , then f(x[composite function]y)=f(x)f(y) for allx,y∈X , or |f(x)|≤(1+1+4[straight epsilon])/2 for all x∈X . In the latter case, the constant (1+1+4[straight epsilon])/2 is the best possible.</description><identifier>ISSN: 1025-5834</identifier><identifier>ISSN: 1029-242X</identifier><identifier>EISSN: 1029-242X</identifier><identifier>DOI: 10.1186/1029-242X-2009-486375</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Mathematics ; Probability</subject><ispartof>Journal of inequalities and applications, 2009-01, Vol.2009 (1), p.486375-486375</ispartof><rights>Copyright © 2009 Takeshi Miura et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/856033265/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/856033265?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,25732,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Miura, Takeshi</creatorcontrib><creatorcontrib>Takagi, Hiroyuki</creatorcontrib><creatorcontrib>Tsukada, Makoto</creatorcontrib><creatorcontrib>Sin-Ei Takahasi</creatorcontrib><title>Superstability of Generalized Multiplicative Functionals</title><title>Journal of inequalities and applications</title><description>Let X be a set with a binary operation[composite function] such that, for each x,y,z∈X , either(x[composite function]y)[composite function]z=(x[composite function]z)[composite function]y , or z[composite function](x[composite function]y)=x[composite function](z[composite function]y) . We show the superstability of the functional equationg(x[composite function]y)=g(x)g(y) . More explicitly, if [straight epsilon]≥0 andf:X[arrow right]... satisfies |f(x[composite function]y)-f(x)f(y)|≤[straight epsilon] for each x,y∈X , then f(x[composite function]y)=f(x)f(y) for allx,y∈X , or |f(x)|≤(1+1+4[straight epsilon])/2 for all x∈X . In the latter case, the constant (1+1+4[straight epsilon])/2 is the best possible.</description><subject>Mathematics</subject><subject>Probability</subject><issn>1025-5834</issn><issn>1029-242X</issn><issn>1029-242X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkEtLxDAUhYMoOI7-BKG4r-bddCmD84ARFyq4C2l6Ixk6TW1TYfz1tlMRZnUu58IH50PoluB7QpR8IJjmKeX0I6UY5ylXkmXiDM3--_PjLVKhGL9EV123w5gSpvgMqde-gbaLpvCVj4ckuGQFNbSm8j9QJs99FX1TeWui_4Zk2dc2-lCbqrtGF24IuPnLOXpfPr0t1un2ZbVZPG7TggglUmM4FcQacAUGlYMQIhdOSZEzA1lmuaGlIAIXTmQlZ2AznIMqqSWlpMAxm6PNxC2D2emm9XvTHnQwXh-L0H5q00ZvK9C5kcph4pTBlisoCsdzwqUDwFa6YfAcrSdW4cMeSgt1HIaeQE8_Nuz1aFGPFvVoV092B9TdhGra8NVDF_Uu9O0oRishMWNUCvYL1Gx8Eg</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Miura, Takeshi</creator><creator>Takagi, Hiroyuki</creator><creator>Tsukada, Makoto</creator><creator>Sin-Ei Takahasi</creator><general>Springer Nature B.V</general><general>BioMed Central Ltd</general><general>SpringerOpen</general><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20090101</creationdate><title>Superstability of Generalized Multiplicative Functionals</title><author>Miura, Takeshi ; Takagi, Hiroyuki ; Tsukada, Makoto ; Sin-Ei Takahasi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b1585-aa4251caefb0e89e55595f86593ae77c4a2d5150bf57d43ec709e8d2c1d62e403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Mathematics</topic><topic>Probability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miura, Takeshi</creatorcontrib><creatorcontrib>Takagi, Hiroyuki</creatorcontrib><creatorcontrib>Tsukada, Makoto</creatorcontrib><creatorcontrib>Sin-Ei Takahasi</creatorcontrib><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of inequalities and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miura, Takeshi</au><au>Takagi, Hiroyuki</au><au>Tsukada, Makoto</au><au>Sin-Ei Takahasi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superstability of Generalized Multiplicative Functionals</atitle><jtitle>Journal of inequalities and applications</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>2009</volume><issue>1</issue><spage>486375</spage><epage>486375</epage><pages>486375-486375</pages><issn>1025-5834</issn><issn>1029-242X</issn><eissn>1029-242X</eissn><abstract>Let X be a set with a binary operation[composite function] such that, for each x,y,z∈X , either(x[composite function]y)[composite function]z=(x[composite function]z)[composite function]y , or z[composite function](x[composite function]y)=x[composite function](z[composite function]y) . We show the superstability of the functional equationg(x[composite function]y)=g(x)g(y) . More explicitly, if [straight epsilon]≥0 andf:X[arrow right]... satisfies |f(x[composite function]y)-f(x)f(y)|≤[straight epsilon] for each x,y∈X , then f(x[composite function]y)=f(x)f(y) for allx,y∈X , or |f(x)|≤(1+1+4[straight epsilon])/2 for all x∈X . In the latter case, the constant (1+1+4[straight epsilon])/2 is the best possible.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1186/1029-242X-2009-486375</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1025-5834
ispartof Journal of inequalities and applications, 2009-01, Vol.2009 (1), p.486375-486375
issn 1025-5834
1029-242X
1029-242X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9a68f01f8a0c48ebbf49146fee0c6f21
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access
subjects Mathematics
Probability
title Superstability of Generalized Multiplicative Functionals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A27%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superstability%20of%20Generalized%20Multiplicative%20Functionals&rft.jtitle=Journal%20of%20inequalities%20and%20applications&rft.au=Miura,%20Takeshi&rft.date=2009-01-01&rft.volume=2009&rft.issue=1&rft.spage=486375&rft.epage=486375&rft.pages=486375-486375&rft.issn=1025-5834&rft.eissn=1029-242X&rft_id=info:doi/10.1186/1029-242X-2009-486375&rft_dat=%3Cproquest_doaj_%3E2286997431%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b1585-aa4251caefb0e89e55595f86593ae77c4a2d5150bf57d43ec709e8d2c1d62e403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=856033265&rft_id=info:pmid/&rfr_iscdi=true