Loading…

Uniformly aligned flexible magnetic films from bacterial nanocelluloses for fast actuating optical materials

Naturally derived biopolymers have attracted great interest to construct photonic materials with multi-scale ordering, adaptive birefringence, chiral organization, actuation and robustness. Nevertheless, traditional processing commonly results in non-uniform organization across large-scale areas. He...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2022-10, Vol.13 (1), p.5804-5804, Article 5804
Main Authors: Zhang, Xiaofang, Kang, Saewon, Adstedt, Katarina, Kim, Minkyu, Xiong, Rui, Yu, Juan, Chen, Xinran, Zhao, Xulin, Ye, Chunhong, Tsukruk, Vladimir V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Naturally derived biopolymers have attracted great interest to construct photonic materials with multi-scale ordering, adaptive birefringence, chiral organization, actuation and robustness. Nevertheless, traditional processing commonly results in non-uniform organization across large-scale areas. Here, we report magnetically steerable uniform biophotonic organization of cellulose nanocrystals decorated with superparamagnetic nanoparticles with strong magnetic susceptibility, enabling transformation from helicoidal cholesteric (chiral nematic) to uniaxial nematic phase with near-perfect orientation order parameter of 0.98 across large areas. We demonstrate that magnetically triggered high shearing rate of circular flow exceeds those for conventional evaporation-based assembly by two orders of magnitude. This high rate shearing facilitates unconventional unidirectional orientation of nanocrystals along gradient magnetic field and untwisting helical organization. These translucent magnetic films are flexible, robust, and possess anisotropic birefringence and light scattering combined with relatively high optical transparency reaching 75%. Enhanced mechanical robustness and uniform organization facilitate fast, multimodal, and repeatable actuation in response to magnetic field, humidity variation, and light illumination. Naturally derived biopolymers attracted great interest to construct photonic materials but traditional processing commonly results in non-uniform organization across largescale areas. Here, the authors report a uniform biophotonic organization of cellulose nanocrystals decorated with superparamagnetic nanoparticles enabling transformation from helicoidal cholesteric to uniaxial nematic phase with near-perfect orientation.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-33615-z